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Some examples of point patterns: 2D

Locations of some (Langerin) proteins in a living cell.
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Some examples of point patterns: 2D

Positions of 4215 galaxies in the Shapley Supercluster.
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Some examples of point patterns: 3D

Locations of nucleosomes in a cell nucleus of a brain.
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Some examples of point patterns: with discrete marks

Cell nuclei in hamster kidney, subject to a metastatic lymphoma.

In black: “dividing” cells
In red: “pyknotic” cells, i.e. dying cells
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Some examples of point patterns: continuous marks

Locations and diameters of sea anemones (at Quiberon)
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Some examples of point patterns: with auxiliary information

Locations of trees in a tropical rain forest.
Auxiliary information: elevation in the study region
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The setting

In this presentation, for simplicity:

we work on a bounded set S ⊂ Rd (typically d = 2)
the point patterns are simple (no duplicated points)
there is no mark (neither discrete, nor continuous)
there are no auxiliary information (no covariate)
we do not consider temporal, nor space-time, point processes

The main goal is to analyse/model the repartition of points.
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What is a spatial point process?

A point pattern x in S is a locally finite subset of S .

Denoting by n(A) the cardinality of any set A ⊆ S , this means:{
x ⊂ S ,

for all A ⊆ S , n(x ∩ A) <∞.

Hence, it makes sense to write x = {x1, . . . , xn(x)} where n(x) = n(x ∩ S)
and xi ∈ S for all i = 1, . . . , n(x).

A spatial point process X is a random point pattern in S .
The number of points n(X) is random.
The locations of the points in S are random.
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First order intensity ρ

The first order intensity ρ answers two questions:
How many points can be expected?
Where are the points more likely to occur?

By definition, the intensity ρ satisfies:

∀A ⊆ S , E(n(X ∩ A)) = E

(∑
u∈X

1u∈A

)
=

∫
A

ρ(u)du.

Intuitively, for u ∈ S , ρ(u) ≈ P(X has a point at u).

In particular: E(n(X)) =
∫
S
ρ(u)du.
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First order intensity ρ

An important special case : the homogeneous case

ρ(u) = ρ for any u ∈ S .

Then,
for any A ⊆ S , E(n(X ∩ A)) = ρ|A|
the points are equally likely to appear anywhere.

Otherwise, the point process is inhomogeneous.

Homogeneous Homogeneous Inhomogeneous Inhomogeneous
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First order intensity ρ: estimation

Assume we observe a realisation x of X in S . How can we estimate ρ?

If X is assumed to be homogeneous : ρ̂ = n(x)/|S |.

If X is not assumed to be homogeneous:
non parametric estimation of u 7→ ρ(u): for a density kernel k
(typically the standard Gaussian density), and a bandwidth h > 0,

ρ̂(u) =
∑
v∈x

1
hd

k

(
v − u

h

)
/Kh(v), u ∈ S ,

where Kh(v) = h−d
∫
S
k
(
v−u
h

)
du accounts for edge effects

(Kh(v) ≈ 1 if v is far from the border of S).

Remark:
∫
S
ρ̂(u)du = n(x) in agreement with

∫
S
ρ(u)du = E(n(x)).

The choice of h is crucial: adaptive choices are available.

if that makes sense, we can assume a parametric form for ρ(u), i.e.
ρ(u) = ρθ(u), and estimate the parameter θ by specific methods.

Ex: ρθ(u) = exp(θ1z1(u) + θ2z2(u)) where z1, z2 are auxiliary variables.
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First order intensity ρ: estimation

Examples of non-parametric estimation of the intensity
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Second order moments : the second order intensity

Aim: analyse the interaction between the points (≈ spatial covariance)

The second order intensity ρ(2)(u, v) satisfies

∀A,B ⊆ S , E

 6=∑
u,v∈X

1u∈A, v∈B

 =

∫
A

∫
B

ρ(2)(u, v)dudv .

Intuitively, ρ(2)(u, v) ≈ P(X has a point at u and a point at v).

Interpretation:
If the points are located independently of each other, then

ρ(2)(u, v) = ρ(u)ρ(v)

If there is a positive dependence (attraction), then

ρ(2)(u, v) > ρ(u)ρ(v)

If there is a negative dependence (inhibition), then

ρ(2)(u, v) < ρ(u)ρ(v)
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Second order moments: the pcf

In spatial statistics, we rather use the pair correlation function (pcf) g

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
.

If g(u, v) = 1, there is no interaction between u and v ,
If g(u, v) > 1, there is attraction,
If g(u, v) < 1, there is inhibition.

In most applications, it is assumed that g(u, v) only depends on ‖u − v‖.
We then simply define for r > 0

g(r) =
ρ(2)(u, v)

ρ(u)ρ(v)
for ‖u − v‖ = r .

This is the case for a stationary and isotropic point process.
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Second order moments: the pcf

Examples of theoretical pcf g , with one realisation for each.
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Second order moments: Ripley’s K function

Assume that X is stationary and isotropic, with intensity ρ.

The Ripley’s K function is defined for any r > 0 by

ρK (r) = expected number of neighbours within distance r of a point u ∈ X.

Mathematically, denoting B(u,R) the ball centred at u with radius R,

K (r) =
1
ρ
E
(
n(X ∩ B(u, r))− 1

∣∣∣u ∈ X
)
,

=
1
ρ
E
(
n(X ∩ B(0, r))− 1

∣∣∣0 ∈ X
)

by stationarity of X.

We can prove that

K (r) =

∫
B(0,r)

g(‖u‖)du = dωd

∫ r

0
td−1g(t)dt,

where ωd = |B(0, 1)| = πd/2/Γ(1 + d/2).
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Second order moments: Ripley’s K function

Remember: g(r) = 1 ⇒ no interaction. So:
K (r) = ωd r

d ⇒ no interaction,
K (r) > ωd r

d ⇒ attraction,
K (r) < ωd r

d ⇒ repulsion.
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Second order moments: estimation of K (r)

Since

ρK (r) = expected number of neighbours within distance r of a point u ∈ X,

a natural estimator for K (r) based on a realisation x is

K̃ (r) =
1
ρ̂

1
n(x)

∑
u∈x

[n(x ∩ B(u, r))− 1] =
1
ρ̂

1
n(x)

6=∑
u,v∈x

1‖u−v‖<r .

But there are edge effects! One solution is to use:

K̂ (r) =
1
ρ̂2

6=∑
u,v∈x

1‖u−v‖<r

|S ∩ Su−v |
,

where Su−v = S + (u − v) is the translation of S by (u − v).
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Second order moments: estimation of K (r)
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Second order moments: estimation of K (r)

Why is it a good correction? Let us prove that E
(
ρ̂2K̂ (r)

)
= ρ2K (r).

E
(
ρ̂2K̂ (r)

)
= E

 6=∑
u,v∈X

1‖u−v‖<r

|S ∩ Su−v |


(by def of ρ(2)) =

∫
S

∫
S

1‖u−v‖<r

|S ∩ Su−v |
ρ(2)(u, v)dudv

= ρ2
∫ ∫

1u∈S1v∈S
1‖u−v‖<r

|S ∩ Su−v |
g(‖u − v‖)dudv

(w = u − v) = ρ2
∫ ∫

1u∈S1u−w∈S
1‖w‖<r

|S ∩ Sw |
g(‖w‖)dudw

= ρ2
∫ 1‖w‖<r

|S ∩ Sw |
g(‖w‖)

(∫
1u∈S∩Swdu

)
dw

= ρ2
∫

1‖w‖<r g(‖w‖) |S ∩ Sw |
|S ∩ Sw |

dw

= ρ2K (r).
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Second order moments: estimation of g(r)

Assume again that X is stationary and isotropic, with intensity ρ.

Remember that g(r) = ρ(2)(u, v)/ρ2 where r = ‖u − v‖.

For a kernel k (e.g. a Gaussian density) and a bandwidth h > 0,

ĝ(r) =
1
ρ̂2

1
dωd rd−1

6=∑
u,v∈x

1
hd

k

(
‖v − u‖ − r

h

)
1

|S ∩ Su−v |

Red term: due to polar coordinates (ωd = |B(0, 1)|)
Blue term: same edge correction as before
The sum: we are “counting” the number of pairs (u, v) at distance ≈ r .

As for all non-parametric method, the choice of h is crucial.
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Second order moments: estimation of g(r)
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Other summary statistics

Assume again that X is stationary and isotropic, with intensity ρ.

The L-function: L(r) = (K (r)/ωd)1/d , with ωd = |B(0, 1)|.
The empty space function

F (r) = P(n(X ∩ B(0, r)) > 0).

The nearest neighbour distribution function

G (r) = P(n(X ∩ B(0, r)) > 1 | 0 ∈ X).

The J-function: J(r) = (1− G (r))/(1− F (r)).

Interpretation:
No interaction : L0(r) = r , F0(r) = G0(r) = 1− e−ρωd r

d

and J0(r) = 1.
Attraction if L(r) > r , F (r) < F0(r), G (r) > G0(r), J(r) < 1.
Inhibition if L(r) < r , F (r) > F0(r), G (r) < G0(r), J(r) > 1.
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For each of the considered models, the main questions are:
What are its main characteristics: attraction? inhibition?
Do we know its moments (e.g. ρ and g)?
How can we simulate a realisation?
How can we fit this model to a point pattern?
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Homogeneous Poisson point process

A homogeneous PPP X with intensity ρ on S satisfies:

n(X) ∼ P(ρ|S |), i.e.

P(n(X) = k) = e−ρ|S|
(ρ|S |)k

k!
, ∀ k = 0, 1, 2, . . . ,

Given n(X) = n, {x1, . . . , xn} are independent and uniform in S .

The simulation is straightforward.

ρ = 100 ρ = 100 ρ = 1000
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Inhomogeneous Poisson point process

An inhomogeneous PPP with intensity function ρ(u) on S satisfies:

n(X) ∼ P(
∫
S
ρ(u)du),

Given n(X) = n, {x1, . . . , xn} are independently distributed in S
according to the density u 7→ ρ(u)/(

∫
S
ρ(u)du).
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Poisson point process: moments

For a PPP with intensity function ρ(u):
The intensity function is indeed ρ(u).

We need to prove that for any A ⊆ S , E(n(X ∩ A)) =
∫
A
ρ(u)du.

Denoting c =
∫
S
ρ(u)du so that n(X) ∼ P(c),

E(n(X ∩ A)) =
∑
n≥0

E(n(X ∩ A)|n(X) = n)P(n(X) = n)

=
∑
n≥0

n

∫
A

ρ(u)

c
du e−c

cn

n!

(
since xi |n(X) are iid ∼ ρ(u)

c

)

=

(∫
A

ρ(u)du

)∑
n≥1

e−c
cn−1

(n − 1)!
=

∫
A

ρ(u)du.

The second order intensity function is ρ(2)(u, v) = ρ(u)ρ(v).
Hence g(r) = 1 for all r > 0 and K (r) = dωd r

d .

PPP is the default model for non-interacting points,
i.e. Complete Spatial Randomness (CSR).
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Poisson point process: density (or likelihood)

The reference point process X0 is the PPP with intensity ρ = 1.

A PPP X with intensity function ρ(u) admits the density wrt X0:

f (x) = e|S|−
∫
S
ρ(u)du

n(x)∏
i=1

ρ(xi ), ∀ x = {x1, . . . , xn(x)}.

Proof:
We need to prove that for any test function h, E(h(X)) = E(h(X0)f (X0)).

E(h(X0)f (X0)) =
∑
n≥0

E(h(X0)f (X0)|n(X0) = n)P(n(X0) = n)

=
∑
n≥0

∫
Sn

h(u1, . . . , un)f (u1, . . . , un)
du1

|S | . . .
dun
|S | e

−|S| |S |n

n!

(c =

∫
S

ρ(u)du) =
∑
n≥0

∫
Sn

h(u1, . . . , un)e−c
n∏

i=1

ρ(ui )dui
1
n!

=
∑
n≥0

∫
Sn

h(u1, . . . , un)
n∏

i=1

ρ(ui )

c
dui

1
n!

cne−c

=
∑
n≥0

E(h(X)|n(X) = n)P(n(X) = n) = E(h(X))
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Poisson point process: inference

The only parameter to fit is the intensity function ρ(u).

Given x = {x1, . . . , xn(x)}, the log-likelihood is

log f (x) = |S | −
∫
S

ρ(u)du +

n(x)∑
i=1

log ρ(xi )

For a homogeneous PPP (ρ(u) = ρ), ρ̂ = n(x)/|S | is the MLE.
For a parametric inhomogeneous PPP (ρ(u) = ρθ(u)),

θ̂ = argmax
θ

n(x)∑
i=1

log ρθ(xi )−
∫
S

ρθ(u)du.

For a general inhomogeneous PPP: non-parametric estimator

ρ̂(u) =
1

Kh(u)

∑
v∈x

1
hd

k

(
v − u

h

)
, u ∈ S .
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Poisson point process: validation

Is a (Poisson) model a good fit to a point pattern?
1 Fit the model.
2 Simulate many realisations from the fitted model.
3 Compute a descriptor for each realisation, for instance K̂ (r) or ĝ(r).
4 Check if the same descriptor for the data is consistent with these

simulations.
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Poisson point process: validation

We fit a homogeneous PPP to these point patterns, and check with K
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Poisson point process: validation

idem with g
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1 Examples of points patterns

2 Summary/descriptive statistics
First order moment
Second order moments
Other summary statistics

3 Point process models
Poisson point process (PPP)
Cox point processes
Gibbs point processes
Determinantal point processes
Short summary
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Cox processes: definition

Let Λ(u), for u ∈ S , be a nonnegative random field on S .

X is a Cox process if it is a “PPP with random intensity Λ(u)”.

Algorithm of simulation:
1 Generate Λ(u).
2 Given Λ(u) = λ(u), generate a PPP with intensity λ(u).

Intuitively, X will have many points where λ(u) takes high values,
provided λ(u) is smooth enough.

⇒ we expect a clustering behavior
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Cox process: example

Example : LGCP (Log Gaussian Cox process)
Let G (u) be a Gaussian random field on S and take

Λ(u) = exp(G (u)).

1 We simulate the Gaussian field G (u)
2 Given G (u), we generate the PPP with intensity exp(G (u)).
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Cox process: general properties

Note the difference with an inhomogeneous PPP:
for a PPP, the clusters are at the same place for every realisations.
No interaction between the points.
for a Cox process, the clusters are located randomly.
This creates an attraction between the points (see next slide)
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Cox process: general properties

The intensity of a Cox process is ρ(u) = E(Λ(u))

E(n(X ∩ A)) = E (E(n(X ∩ A)|Λ)) = E
(∫

A

Λ(u)du

)
=

∫
A

E(Λ(u))du.

The second order intensity is ρ(2)(u, v) = E (Λ(u)Λ(v)).
So the pcf is

g(u, v) =
E (Λ(u)Λ(v))

E(Λ(u))E(Λ(v))
.

If Λ is positively correlated (the typical case), there is attraction:

Cov(Λ(u),Λ(v)) ≥ 0⇔ E (Λ(u)Λ(v)) ≥ E(Λ(u))E(Λ(v))⇔ g(u, v) ≥ 1.

The density wrt to X0 (PPP with intensity 1) is

f (x) = E

e|S|−
∫
S

Λ(u)du

n(x)∏
i=1

Λ(xi )

 , ∀ x = {x1, . . . , xn(x)}.

None of ρ, ρ(2), g and f is explicit in general for a Cox process!
But some are known for important cases, see next.
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Example: Log Gaussian Cox process (LGCP)

Let G (u) be an isotropic Gaussian random field with
mean m: E(G (u)) = m,
covariance function c(r): Cov(G (u),G (u + v)) = c(‖v‖)

The LGCP driven by G (u) is the Cox process driven by Λ(u) = exp(G (u))
We know its moments:

ρ = exp(m + c(0)/2),

g(r) = exp(c(r)).

But the density does not simplify.
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Example: Neymann-Scott process

A Neymann-Scott process is a union of clusters:

X =
⋃
c∈C

Xc

C (centers) is a homogeneous PPP with intensity γ
Given c ∈ C , Xc (a cluster) is a PPP with intensity αk(u − c)

Interpretation of parameters:
γ > 0 is the intensity of clusters,
α > 0 is the mean intensity (or size) of each cluster
k is a kernel (a density) encoding the spread of each cluster.

This is in fact a Cox point process driven by the random field

Λ(u) =
∑
c∈C

αk(u − c).
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Example: Neymann-Scott process

Matérn cluster process with radius R: k is the uniform density on B(0,R)
Thomas process with variance σ2: k is the density of a N (0, σ2Id).

Matérn (R = 0.05) Thomas (σ = 0.02)
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Example: Neymann-Scott process

For a Neymann-Scott process with parameters γ > 0, α > 0 and k .

ρ = γα,

g(r) = 1 +
1
γ

∫
k(s)k(s + r)ds.

(the integral in g is explicit for a Matérn cluster and a Thomas process)

The density does not simplify.
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Cox process: inference

Let a parametric Cox process X with parameter θ.
For instance θ = (γ, α, σ2) for a Thomas process.

We may estimate θ from a realisation x of X by:

Minimum contrast estimation based on g or K , that is

θ̂ = argmin
θ

∫ rmax

rmin

(ĝ(r)q − gθ(r)q)2 dr

or θ̂ = argmin
θ

∫ rmax

rmin

(
K̂ (r)q − Kθ(r)q

)2
dr

where typically q = 1/4, rmin = 0 and rmax is to be chosen.
Maximum likelihood estimation

θ̂ = argmax
θ

E

e|S|−
∫
S

Λθ(u)du

n(X)∏
i=1

Λθ(xi )


but this requires huge Monte-Carlo simulations to approximate E(.)
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Gibbs point processes

We speak of a Gibbs model when we define X through its density.

Examples :
A PPP with intensity ρ(u) admits the density (wrt to X0):

f (x) = e|S|−
∫
S
ρ(u)du

n(x)∏
i=1

ρ(xi ) = c exp

(∑
u∈x

log(ρ(u))

)
where c does not depend on x. In the homogeneous case

f (x) = c exp(log(ρ) n(x)).

We define an homogeneous pairwise interaction Gibbs model by

f (x) = c exp

(
βn(x) +

6=∑
u,v∈x

Φ(‖u − v‖)

)
,

where β > 0 is related (but not equal) to the log-intensity ρ of x,
and Φ : R+ → R ∪ {−∞} is the pairwise interaction function.
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(∑
u∈x

log(ρ(u))

)
where c does not depend on x. In the homogeneous case

f (x) = c exp(log(ρ) n(x)).

We define an homogeneous pairwise interaction Gibbs model by

f (x) = c exp

(
βn(x) +

6=∑
u,v∈x

Φ(‖u − v‖)

)
,

where β > 0 is related (but not equal) to the log-intensity ρ of x,
and Φ : R+ → R ∪ {−∞} is the pairwise interaction function.
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Pairwise interaction Gibbs models

Recall : the density wrt to X0 (i.e., the PPP with ρ = 1) is

f (x) = c exp

(
βn(x) +

6=∑
u,v∈x

Φ(‖u − v‖)

)
.

Interpretation:
If Φ = 0, then we’re back to a PPP
A realisation x will tend to maximise

∑6=
u,v∈x Φ(‖u − v‖)

Existence:
Any Φ is admissible provided the normalizing constant c exists, that is if

E(f (X0)) = 1⇔ c−1 = E

exp

βn(X0) +

6=∑
u,v∈X0

Φ(‖u − v‖)

 <∞.
A sufficient assumption is Φ ≤ 0.
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Example: the Strauss process

Strauss model with radius R > 0 and interaction parameter γ ≤ 0 when

Φ(r) = γ1r≤R

so that
f (x) = c exp (βn(x) + γsR(x)) ,

where sR(x) is the number of R-close pairs of points in x.

γ = log(0.8) γ = log(0.5) γ = log(0.2)
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Example: the Hardcore point process

The Hardcore model with radius R > 0 corresponds to

Φ(r) =

{
−∞ if r ≤ R

0 otherwise

so that no pairs can occur at a distance less than R.

R = 0.05 R = 0.1
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Example: non pairwise interaction

We can consider more complicated density. For instance the area
interaction process, for R > 0 and γ ∈ R,

f (x) = c exp

(
βn(x) + γ

∣∣∣∣∣⋃
u∈x

B(u,R)

∣∣∣∣∣
)
,

where the interaction depends on the volume of the union of balls.

γ < 0 γ > 0
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Gibbs point process: general properties

Advantages:
Flexible models, easy to interpret
Mainly used to model inhibition between the points
But some Gibbs models can yield attraction between points

Drawbacks:
We do not know the moments (neither ρ, nor g , nor K )
Not easy to simulate (MCMC methods are needed)
In the density, we do not know explicitly c : this is problematic when
it comes to estimate a parameter θ by MLE (since c depends on θ)
Very hard to deal with in theory
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Gibbs point process: Papangelou conditional intensity

The Papangelou conditional intensity is defined for any u and x by

λ(u, x) =
f (x ∪ u)

f (x)
.

Intuitively, this is the probability to have a point at u given that the point
configuration otherwise is x.

The benefit of λ over f is that λ(u, x) does not depend on c .

We can take advantage of that for:
parametric inference, through the pseudo-likelihood estimator:

θ̂ = argmax
θ

n(x)∑
i=1

log λθ(xi , x \ xi )−
∫
S

λθ(u, x)du.

(not the similarity with the log-likelihood of a PPP)

simulating X by a birth-death Metropolis-Hastings algorithm, where
a birth proposal at u depends (positively) on λ(u, x)
a death proposal of xi ∈ x depends (negatively) on λ(xi , x \ xi ).
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Determinantal point processes (DPPs)

The n-th order intensity ρ(n) of a point process satisfies

E

 6=∑
u1,...,un∈X

1u1∈A1,...,un∈An

 =

∫
A1

· · ·
∫
An

ρ(n)(u1, . . . , un)du1 · · · dun,

∀A1, . . . ,An ⊆ S . Intuitively, ρ(n)(u1, . . . , un) ≈ P({u1, . . . , un} ⊂ X).

A DPP is defined through the intensities ρ(n).

Let C (u, v) be a covariance function. X is a DPP with kernel C if

∀n ≥ 1, ρ(n)(u1, . . . , un) = det [C (ui , uj)]1≤i,j≤n ,

where [C (ui , uj)]1≤i,j≤n denotes the n × n matrix with entries C (ui , uj).

60 / 67



Determinantal point processes (DPPs)

The n-th order intensity ρ(n) of a point process satisfies

E

 6=∑
u1,...,un∈X

1u1∈A1,...,un∈An

 =

∫
A1

· · ·
∫
An

ρ(n)(u1, . . . , un)du1 · · · dun,

∀A1, . . . ,An ⊆ S . Intuitively, ρ(n)(u1, . . . , un) ≈ P({u1, . . . , un} ⊂ X).

A DPP is defined through the intensities ρ(n).

Let C (u, v) be a covariance function. X is a DPP with kernel C if

∀n ≥ 1, ρ(n)(u1, . . . , un) = det [C (ui , uj)]1≤i,j≤n ,

where [C (ui , uj)]1≤i,j≤n denotes the n × n matrix with entries C (ui , uj).

60 / 67



Stationary DPPs

Recall: X is a DPP with kernel C if

∀n ≥ 1, ρ(n)(u1, . . . , un) = det [C (ui , uj)]1≤i,j≤n .

If C (u, v) = C (‖u − v‖), then X is stationary, isotropic and
its intensity is ρ(1)(u) = ρ = C (0)

its second order intensity ρ(2) is

ρ(2)(u, v) = det

(
C (0) C (‖u − v‖)

C (‖u − v‖) C (0)

)
= C (0)2−C (‖u−v‖)2.

Hence its pcf is, for r = ‖u − v‖, is

g(r) =
ρ(2)(u, v)

ρ(u)ρ(v)
= 1− C (r)2

C (0)2 .

Since g ≤ 1, DPPs are models for inhibitive point processes.
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Stationary DPPs: example

Existence: C (r) must be a covariance function such that F(C ) ≤ 1.

Example: The Gaussian-type DPP
The Gaussian covariance function C (r) = ρe−r

2/α2
with πρα2 ≤ 1

defines the DPP with intensity ρ and pcf g(r) = 1− e−2r2/α2
.

small α medium α big α
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Density of a DPP

In theory, the kernel C admits the eigen-decomposition on S

C (u, v) =
∑
k≥1

λkΦk(u)Φk(v), u, v ∈ S , (1)

where 0 ≤ λk ≤ 1 and (Φk)k is an orthonormal basis of L2(S).

From this decomposition we can:
implement a perfect simulation algorithm ;
deduce the density of the DPP when λk < 1, that is

f (x) = c det [L(xi , xj)]1≤i,j≤n ,

where c = e|S|
∏

k≥1(1− λk) and L is another kernel defined by

L(u, v) =
∑
k≥1

λk
1− λk

Φk(u)Φk(v), u, v ∈ S .

But (1) is rarely known, unless C is defined through it.
Approximations exist in the stationary case C (u, v) = C (‖u − v‖).
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DPP: inference

Let a parametric DPP X with parameter θ.
For instance θ = (ρ, α) for a Gaussian-type DPP.

We may estimate θ from a realisation x of X by:

Minimum contrast estimation based on g or K , that is

θ̂ = argmin
θ

∫ rmax

rmin

(ĝ(r)q − gθ(r)q)2 dr

or θ̂ = argmin
θ

∫ rmax

rmin

(
K̂ (r)q − Kθ(r)q

)2
dr

where typically q = 1/2, rmin = 0 and rmax is to be chosen.

MLE, if we know the eigen-decomposition of C :

θ̂ = argmax
θ

fθ(x).
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Summary

Models Main features ρ, g density

Poisson Only for CSR. 3 3

Cox Attraction, clusters. 3 7
(LGCP, Matérn, Thomas)

Gibbs Very flexible. 7 31

Mainly inhibition
but attraction possible.

DPP Inhibition. 3 32

Less flexible than Gibbs.

1up to the constant; Papangelou conditional density is rather used for inference.
2if we know the eigen-decomposition of the kernel.
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