A short introduction to models and inference for

spatial point processes.

Frédéric Lavancier
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Some examples of point patterns: 2D

Locations of some (Langerin) proteins in a living cell.
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Some examples of point patterns: 2D

Positions of 4215 galaxies in the Shapley Supercluster.
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Some examples of point patterns: 3D

Locations of nucleosomes in a cell nucleus of a brain.
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Some examples of point patterns: with discrete marks

Cell nuclei in hamster kidney, subject to a metastatic lymphoma.

In black: “dividing” cells
In red: “pyknotic” cells, i.e. dying cells
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Some examples of point patterns: continuous marks

Locations and diameters of sea anemones (at Quiberon)
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Some examples of point patterns: with auxiliary information

Locations of trees in a tropical rain forest.
Auxiliary information: elevation in the study region
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In this presentation, for simplicity:
we work on a bounded set S C RY (typically d = 2)

the point patterns are simple (no duplicated points)

°
"]

o there is no mark (neither discrete, nor continuous)
o there are no auxiliary information (no covariate)
°

we do not consider temporal, nor space-time, point processes

The main goal is to analyse/model the repartition of points.
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What is a spatial point process?

A point pattern x in S is a locally finite subset of S.

Denoting by n(A) the cardinality of any set A C S, this means:
x C S,
forall AC S, n(xNA) < oo.

Hence, it makes sense to write x = {x1,..., X,(x)} where n(x) = n(xNS)
and x; € Sforalli=1,...,n(x).

11/67



What is a spatial point process?

A point pattern x in S is a locally finite subset of S.

Denoting by n(A) the cardinality of any set A C S, this means:

x C S,
forall AC S, n(xNA) < oo.

Hence, it makes sense to write x = {x1,..., X,(x)} where n(x) = n(xNS)
and x; € Sforalli=1,...,n(x).

A spatial point process X is a random point pattern in S.
@ The number of points n(X) is random.

@ The locations of the points in S are random.
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© Summary/descriptive statistics
@ First order moment
@ Second order moments
@ Other summary statistics
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First order intensity p

The first order intensity p answers two questions:
@ How many points can be expected?

@ Where are the points more likely to occur?
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First order intensity p

The first order intensity p answers two questions:
@ How many points can be expected?

@ Where are the points more likely to occur?

By definition, the intensity p satisfies:

VACS, E(n(XnNA)) (Z 1UGA) :/ p(u)du.

ueX

Intuitively, for u € S, p(u) ~ P(X has a point at u).

In particular: E(n = [s p(u)
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First order intensity p

An important special case : the homogeneous case
p(u)y=p forany ueS.

Then,
e forany AC S, E(n(XNA)) = plA|
@ the points are equally likely to appear anywhere.
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First order intensity p

An important special case : the homogeneous case
p(u)y=p forany ueS.

Then,
e forany AC S, E(n(XNA)) = plA|
@ the points are equally likely to appear anywhere.

Otherwise, the point process is inhomogeneous.

Homogeneous Homogeneous Inhomogeneous  Inhomogeneous
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First order intensity p: estimation

Assume we observe a realisation x of X in S. How can we estimate p?
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First order intensity p: estimation

Assume we observe a realisation x of X in S. How can we estimate p?

If X is assumed to be homogeneous : p = n(x)/|S]|.
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First order intensity p: estimation

Assume we observe a realisation x of X in S. How can we estimate p?
If X is assumed to be homogeneous : p = n(x)/|S]|.

If X is not assumed to be homogeneous:

@ non parametric estimation of u+— p(u): for a density kernel k
(typically the standard Gaussian density), and a bandwidth h > 0,

o) =3 sk (50) skt wes.

where Ky(v) = Y—4) du accounts for edge effects
(Kh(v) ~ 1 if v is far from the border of S).

Remark: [ p(u)du = n(x) in agreement with [ p(u)du = E(n(x)).

The choice of h is crucial: adaptive choices are available.
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First order intensity p: estimation

Assume we observe a realisation x of X in S. How can we estimate p?
If X is assumed to be homogeneous : p = n(x)/|S]|.

If X is not assumed to be homogeneous:

@ non parametric estimation of u+— p(u): for a density kernel k
(typically the standard Gaussian density), and a bandwidth h > 0,

o) =3 gk (“57) 1K), wes,

vEX

where Ky(v) = h™? [ k (“5*) du accounts for edge effects
(Kh(v) ~ 1 if v is far from the border of S).

Remark: [ p(u)du = n(x) in agreement with [ p(u)du = E(n(x)).

The choice of h is crucial: adaptive choices are available.

o if that makes sense, we can assume a parametric form for p(u), i.e.
p(u) = pg(u), and estimate the parameter 0 by specific methods.

Ex: po(u) = exp(61z1(u) + 0222(u)) where z1, zo are auxiliary variables.
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First order intensity p: estimation

Examples of non-parametric estimation of the intensity
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© Summary/descriptive statistics

@ Second order moments
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Second order moments : the second order intensity

Aim: analyse the interaction between the points (= spatial covariance)
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Second order moments : the second order intensity

Aim: analyse the interaction between the points (= spatial covariance)

The second order intensity p(®)(u, v) satisfies

#
VALBCS, E| > licaes / / (u, v)dudv.

u,veX

Intuitively, p®(u, v) ~ P(X has a point at v and a point at v).
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Second order moments : the second order intensity

Aim: analyse the interaction between the points (= spatial covariance)
The second order intensity p(®)(u, v) satisfies
£
VALBCS, E| > licaes / / (u, v)dudv.
u,veX
Intuitively, p®(u, v) ~ P(X has a point at v and a point at v).

Interpretation:
o If the points are located independently of each other, then

PP (u,v) = p(u)p(v)
o If there is a positive dependence (attraction), then

PP (u,v) > p(u)p(v)
o If there is a negative dependence (inhibition), then

PP (u,v) < p(u)p(v)
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Second order moments: the pcf

In spatial statistics, we rather use the pair correlation function (pcf) g

o If g(u,v) =1, there is no interaction between u and v,
o If g(u,v) > 1, there is attraction,
o If g(u,v) < 1, there is inhibition.

In most applications, it is assumed that g(u, v) only depends on ||u — v||.
We then simply define for r > 0

g(r)= 7‘/) for [[u—v| =r.

This is the case for a stationary and isotropic point process.
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Second order moments: the pcf

Examples of theoretical pcf g, with one realisation for each.

| S1——
T T T T T T T T T T T
005 010 015 020 025 000 005 010 015 02 025
« e
N .

20/67



Second order moments: Ripley’'s K function

Assume that X is stationary and isotropic, with intensity p.

The Ripley’s K function is defined for any r > 0 by

pK(r) = expected number of neighbours within distance r of a point u € X.
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Second order moments: Ripley’'s K function

Assume that X is stationary and isotropic, with intensity p.

The Ripley’s K function is defined for any r > 0 by

pK(r) = expected number of neighbours within distance r of a point u € X.

Mathematically, denoting B(u, R) the ball centred at u with radius R,

K(r) = %E(n(x N B(u,r)) -1

uEX),

1
= ~E(n(X B(0,1)) - 1‘0 €X) by stationarity of X.
p
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Second order moments: Ripley’'s K function

Assume that X is stationary and isotropic, with intensity p.

The Ripley’s K function is defined for any r > 0 by

pK(r) = expected number of neighbours within distance r of a point u € X.

Mathematically, denoting B(u, R) the ball centred at u with radius R,

K(r) = %E(n(x N B(u,r)) -1

uEX),

1
= ~E(n(X B(0,1)) - 1‘0 €X) by stationarity of X.
p

We can prove that

K() = [ ellal)du=duy [ Tg(0)e,
B(0,r) 0

where wy = |B(0,1)| = 79/2/T (1 + d/2).
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Second order moments: Ripley’'s K function

Remember: g(r) =1 = no interaction. So:
K(r) = wqr? = no interaction,
K(r) > wgr? = attraction,
K(r) < wgr? = repulsion.
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Second order moments: estimation of K(r)
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Second order moments: estimation of K(r)

Since

pK(r) = expected number of neighbours within distance r of a point v € X,

a natural estimator for K(r) based on a realisation x is

#

72[” XﬁB u r))—l] % Z lu—v|<r-

1
pn uex vex

K(r) =

EHP—‘
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Second order moments: estimation of K(r)

Since

pK(r) = expected number of neighbours within distance r of a point v € X,

a natural estimator for K(r) based on a realisation x is

#

72[[7 XﬁB u r))—l] % Z lu—v|<r-

1
pn uex vex

K(r) =

EHP—‘

But there are edge effects! One solution is to use:

Lju—vj<r
r =
A2 Z 1SNS,_.|’
u,vex

where S,_, = S + (u — v) is the translation of S by (v — v).
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Second order moments:

estimation of K(r)
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).

s(i) -2 £ s

u,veX
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).

(W )- (z |2';;L<;|)

u,veX
Lju— Ljovi<r
(by def of p(2 A | @) (u, v)dudv
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).

1
2R (r llu=vii<r
5 (7R - (z tes
u,veX
1 '
(by def of p( // —lavil<r @) (u, v)dudv
s
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).

W )- (z |2';;L<;|)

u,veX
Lju— Ljovi<r
(by def of p(2 A | @) (u, v)dudv

—p / /1%51@‘5‘; < gl — Vi)
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).
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u,veX
Lju— Ljovi<r
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w=u=v) =0 [ [Lucstuues g5 aIwl)duchw

1
_ 2 [|w|l<r
[ s gl ( [ Luesos, o) o

25 /67



Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).

W )- (z |2';;L<;|)

u,veX
Lju— Ljovi<r
(by def of p(2 A | @) (u, v)dudv

—p / /1%51@‘5”; < gl — Vi)

w=u=v) =0 [ [Lucstuues g5 aIwl)duchw

1
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Second order moments: estimation of K(r)

Why is it a good correction? Let us prove that E (,62}%(r)) = p?K(r).

W )- (z |2';;L<;|)

u,veX
Lju— Ljovi<r
(by def of p(2 A | @) (u, v)dudv

= / [ tuesties 5 g vl
w=u=v) =0 [ [Lucstuues g5 aIwl)duchw

1
— 2 ”WH<r
[ s gl ( [ Luesos, o) o

SNl
=p /1\\w|\<rg ||W||)|505 | dw

= p*K(r).
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Second order moments: estimation of g(r)
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Second order moments: estimation of g(r)

Assume again that X is stationary and isotropic, with intensity p.
Remember that g(r) = p®(u, v)/p? where r = ||u — v/||.

For a kernel k (e.g. a Gaussian density) and a bandwidth h > 0,

. Hv—u||—r 1
gr) = 2dwdrd 1 Z < 1SAS,_,]

u, v€x

Red term: due to polar coordinates (wq = |B(0,1)|)
Blue term: same edge correction as before
The sum: we are “counting” the number of pairs (u, v) at distance ~ r.

As for all non-parametric method, the choice of h is crucial.
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estimation of g(r)
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© Summary/descriptive statistics

@ Other summary statistics
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Other summary statistics

Assume again that X is stationary and isotropic, with intensity p.
o The L-function: L(r) = (K(r)/w4)?, with wy = |B(0,1)|.
@ The empty space function

F(r)=P(n(XN B(0,r)) > 0).
@ The nearest neighbour distribution function
G(r)=P(n(XN B(0,r)) >1|0 € X).

e The J-function: J(r) = (1 — G(r))/(1 — F(r)).

Interpretation:

No interaction : Lo(r) =r, Fo(r) = Go(r) =1 — e=P%’ and Jo(r)=1.
Attraction if L(r) > r, F(r) < Fo(r), G(r) > Go(r), J(r) < 1.

Inhibition if L(r) < r, F(r) > Fo(r), G(r) < Go(r), J(r) > 1.
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© Point process models
@ Poisson point process (PPP)
@ Cox point processes
@ Gibbs point processes
@ Determinantal point processes
@ Short summary
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For each of the considered models, the main questions are:
@ What are its main characteristics: attraction? inhibition?
@ Do we know its moments (e.g. p and g)?
@ How can we simulate a realisation?

@ How can we fit this model to a point pattern?

31/67



© Point process models
@ Poisson point process (PPP)
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Homogeneous Poisson point process

A homogeneous PPP X with intensity p on S satisfies:

o n(X) ~ P(p|S]), i.e.
k
P(n(X) = k) = efﬂ‘s‘%, Vk=0,1,2,...,
e Given n(X) =n, {x1,...,x,} are independent and uniform in S.
The simulation is straightforward.
p =100 p =100
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Inhomogeneous Poisson point process

An inhomogeneous PPP with intensity function p(u) on S satisfies:

o n(X) ~ P([s p(u)du),

e Given n(X) =n, {x1,...,x,} are independently distributed in S
according to the denS|ty u p(u)/(fs p(u)du).
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Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).
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Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).

We need to prove that for any AC S, E(n(X N A)) = [, p(u)du.
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Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).

We need to prove that for any AC S, E(n(X N A)) = [, p(u)du
Denoting ¢ = [, p(u)du so that n(X) ~ P(c),

n(XNA) =Y E(n(XNA)n(X) = n)P(n(X) = n)

n>0
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(XN A) =Y E(n(X N A)n(X) = n)P(n(X)

n>0
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)

35 /67



Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).

We need to prove that for any AC S, E(n(X N A)) = [, p(u)du
Denoting ¢ = [, p(u)du so that n(X) ~ P(c),

n(XNA) =Y E(n(XNA)n(X) = n)P(n(X) = n)

=
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Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).

We need to prove that for any AC S, E(n(X N A)) = [, p(u)du
Denoting ¢ = [, p(u)du so that n(X) ~ P(c),

n(XNA) =Y E(n(XNA)n(X) = n)P(n(X) = n)

=
_ ;J /A ‘ = <since xi[n(X) are iid ~ ”(C”)>
(/ d“>ze :AP(U)dU-

n>1

@ The second order intensity function is p((u, v) = p(u)p(v).
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Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).

We need to prove that for any AC S, E(n(X N A)) = [, p(u)du
Denoting ¢ = [, p(u)du so that n(X) ~ P(c),

n(XNA) =Y E(n(XNA)n(X) = n)P(n(X) = n)

>0
B ; /A c nl <Since xi|n(X) are iid ~ p(:))
(/ d“) Ze = AP(U)dU-

n>1

@ The second order intensity function is p((u, v) = p(u)p(v).
@ Hence g(r) =1 for all r > 0 and K(r) = dwyrq.
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Poisson point process: moments

For a PPP with intensity function p(u):
@ The intensity function is indeed p(u).

We need to prove that for any AC S, E(n(X N A)) = [, p(u)du
Denoting ¢ = [, p(u)du so that n(X) ~ P(c),

n(XNA) =Y E(n(XNA)n(X) = n)P(n(X) = n)

>0
B ; /A c nl <Since xi|n(X) are iid ~ p(:))
(/ d“) Ze = A/’(U)du-

n>1

@ The second order intensity function is p((u, v) = p(u)p(v).
@ Hence g(r) =1 for all r > 0 and K(r) = dwyrq.

PPP is the default model for non-interacting points,
i.e. Complete Spatial Randomness (CSR).
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Poisson point process: density (or likelihood)

The reference point process Xq is the PPP with intensity p = 1.

A PPP X with intensity function p(u) admits the density wrt Xo:
n(x)

f(X) = e‘S|7f5 plu)du H p(Xi)v Vx = {X1, s 7Xn(x)}'
i=1
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Poisson point process: density (or likelihood)

The reference point process Xq is the PPP with intensity p = 1.

A PPP X with intensity function p(u) admits the density wrt Xo:
‘ n(x)
f(x) = elSI= /s p(u)du HP(X:‘)s Vx = {x1,..., X0 }-

=1
Proof: I
We need to prove that for any test function h, E(h(X)) = E(h(Xo)f(Xo)).
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n(x)
f(X) = e‘S|7f5 plu)du H p(Xi)v Vx = {X1, s 7Xn(x)}'
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Proof: I
We need to prove that for any test function h, E(h(X)) = E(h(Xo)f(Xo)).

E(h(Xo)f(Xo)) = Y E(h( )[n(Xo) = n) P(n(Xo) = n)

n>0
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Poisson point process: density (or likelihood)
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A PPP X with intensity function p(u) admits the density wrt Xo:
n(x)
f(X) = e‘S|7f5 plu)du H p(Xi)v Vx = {X1, s 7Xn(x)}'

i=1

Proof:
We need to prove that for any test function h, E(h(X)) = E(h(Xo)f(Xo)).
E(h(Xo)f(Xo)) = > E(h( )In(Xo) = n)P(n(Xo) = n)
n>0
dU1 dun ,‘5‘|S‘n
,;/ (i (o) T S
n>0
e 1
(c= /p(u)du) Z/ (u1y...,un)e Hp(u,-)du,- ]
s n>0"5" i=1
: plui) l n_—c
,g/n ,un)l:[—c du; —c'e
= > E(h(X)|n(X) = n) P(n(X) = n)
n>0
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n(x)
f(X) = e‘S|7f5 plu)du H p(Xi)v Vx = {X1, s 7Xn(x)}'

i=1

Proof:
We need to prove that for any test function h, E(h(X)) = E(h(Xo)f(Xo)).
E(h(Xo)f(Xo)) = Y E(h( )[n(Xo) = n) P(n(Xo) = n)
u u, dU1 dun e,‘s‘ |S‘n
*2/ A G IR I
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Poisson point process: inference

The only parameter to fit is the intensity function p(u).
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Poisson point process: inference

The only parameter to fit is the intensity function p(u).

Given x = {x1,..., Xn(x) }, the log-likelihood is
. n(x)
0g £(x) = 5| = [ plu)du+ Y log p(x)

i=1

e For a homogeneous PPP (p(u) = p), p = n(x)/|S| is the MLE.
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The only parameter to fit is the intensity function p(u).

Given x = {x1,..., Xn(x) }, the log-likelihood is

. n(x)
0g £(x) = 5| = [ plu)du+ Y log p(x)

i=1

e For a homogeneous PPP (p(u) = p), p )/|S| is the MLE.

po(u)),

= n(x
@ For a parametric inhomogeneous PPP (p ( )

n(x)
0 = argmax lo X; —/ u)du.
ge Z g po (i) SPG( )

i=1
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Poisson point process: inference

The only parameter to fit is the intensity function p(u).

Given x = {x1,..., Xn(x) }, the log-likelihood is

. n(x)
0g £(x) = 5| = [ plu)du+ Y log p(x)

i=1

e For a homogeneous PPP (p(u) = p), p )/|S| is the MLE.

po(u)),

= n(x
@ For a parametric inhomogeneous PPP (p ( )

n(x)
0 = argmax lo Xj) —
gn > log po(x;)

i=1

po(u)du.

o

@ For a general inhomogeneous PPP: non-parametric estimator

OEDY %k (Vh“> /Kn(v), u€Ss.

vVEX
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Poisson point process: validation

Is a (Poisson) model a good fit to a point pattern?
© Fit the model.
@ Simulate many realisations from the fitted model.
© Compute a descriptor for each realisation, for instance K(r) or g(r).

@ Check if the same descriptor for the data is consistent with these
simulations.
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Poisson point process: validation

We fit a homogeneous PPP to these point patterns, and check with K

-
et . .
B . . :
5
> .
2 o .
.
e .
- . .
it . .
V3L el
TR . . .
. . © ae Y -
o | — Kest — Kest — Kest
S 1 - - True Poisson - - True Poisson g | - - True Poisson
Envelope if Poisson {4 Envelope if Poisson o Envelope if Poisson r
S
9
24 3
] 5
8 8 K
3 2 3
8 8 4 8
3 3 3
T T T T T T T T T T T T T
025 000 005 010 015 02 025 000 005 010 015 02 025

30/67



Poisson point process: validation

idem with g
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© Point process models

@ Cox point processes
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Cox processes: definition

Let A(u), for u € S, be a nonnegative random field on S.

X is a Cox process if it is a "PPP with random intensity A(u)

Algorithm of simulation:
@ Generate A(u).
@ Given A(u) = A\(u), generate a PPP with intensity A(u).
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Cox processes: definition

Let A(u), for u € S, be a nonnegative random field on S.

X is a Cox process if it is a "PPP with random intensity A(u)

Algorithm of simulation:
@ Generate A(u).
@ Given A(u) = A\(u), generate a PPP with intensity A(u).

Intuitively, X will have many points where A(u) takes high values,
provided A(u) is smooth enough.

= we expect a clustering behavior

42 /67



Cox process: example

Example : LGCP (Log Gaussian Cox process)
Let G(u) be a Gaussian random field on S and take

A(u) = exp(G(u).
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Cox process: example

Example : LGCP (Log Gaussian Cox process)
Let G(u) be a Gaussian random field on S and take
A(u) = exp(G(u)).
@ We simulate the Gaussian field G(u)
@ Given G(u), we generate the PPP with intensity exp(G(u)).
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Cox process: general properties

Note the difference with an inhomogeneous PPP:

o for a PPP, the clusters are at the same place for every realisations.
No interaction between the points.

o for a Cox process, the clusters are located randomly.
This creates an attraction between the points (see next slide)
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Cox process: general properties

@ The intensity of a Cox process is p(u) = E(A(u))
E(n(X N A)) = E (E(n(X N A)A)) = E (/A /\(u)du) - /AE(/\(U))dU.
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@ So the pcf is

<
—
—

__EAWAW)
&) = EAW)EN V)
If Ais positively correlated (the typical case), there is attraction:
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If Ais positively correlated (the typical case), there is attraction:
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@ The density wrt to Xo (PPP with intensity 1) is
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Cox process: general properties

@ The intensity of a Cox process is p(u) = E(A(u))
E(n(X N A)) = E (E(n(X N A)A)) = E (/A /\(u)du) - /AE(/\(U))dU.

@ The second order intensity is p(® (u, v) = E (A(u)A(
@ So the pcfis

<
—
—

E(Mu)A)

E(A(u))E(A(v))

If Ais positively correlated (the typical case), there is attraction:
Cov(A(1), A(V)) > 0 & E (AW)A(v)) > E(AW)E(A(v)) < g(u, v) > 1.

g(u7 V) -

@ The density wrt to Xo (PPP with intensity 1) is

n(x)
f(x) = E <e|sfS N(u)du H/\(X,)) s Vx =X, X )

i=1

None of p, p®, g and f is explicit in general for a Cox process!
But some are known for important cases, see next.
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Example: Log Gaussian Cox process (LGCP)

Let G(u) be an isotropic Gaussian random field with
e mean m: E(G(u)) = m,
@ covariance function ¢(r): Cov(G(u), G(u+ v)) = c(||v])

The LGCP driven by G(u) is the Cox process driven by A(u) = exp(G(u))
We know its moments:

p = exp(m + c(0)/2),
g(r) = exp(c(r)).

But the density does not simplify.
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Example: Neymann-Scott process

A Neymann-Scott process is a union of clusters:

X:ch

ceC

o C (centers) is a homogeneous PPP with intensity

@ Given c € C, X, (a cluster) is a PPP with intensity ak(u — c)
Interpretation of parameters:

@ ~v > 0 is the intensity of clusters,

@ a > 0 is the mean intensity (or size) of each cluster

@ k is a kernel (a density) encoding the spread of each cluster.

This is in fact a Cox point process driven by the random field

ANu) = Zak(u —c).

ceC
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Example: Neymann-Scott process

Matérn cluster process with radius R: k is the uniform density on B(0, R)
Thomas process with variance o: k is the density of a A/(0,02/y).
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Matérn (R = 0.05) Thomas (¢ = 0.02)
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Example: Neymann-Scott process

For a Neymann-Scott process with parameters v > 0, o > 0 and k.
p=1a,
1
g(r)=1+4-= / k(s)k(s + r)ds.
Y.

(the integral in g is explicit for a Matérn cluster and a Thomas process)

The density does not simplify.

49 /67



Let a parametric Cox process X with parameter 6.
For instance 6 = (v, a, 02) for a Thomas process.

We may estimate 6 from a realisation x of X by:
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Let a parametric Cox process X with parameter 6.
For instance 6 = (v, a, 02) for a Thomas process.

We may estimate 6 from a realisation x of X by:
@ Minimum contrast estimation based on g or K, that is

0 = argmin / - (&(r)?— ge(r)q)Q dr

¢ Fimin
~ *Fmax N 2
or 0 =argmin / (K(r)q - Kg(r)q> dr
O rmin

where typically g = 1/4, rmin = 0 and rmax is to be chosen.

50 /67



Let a parametric Cox process X with parameter 6.
For instance 6 = (v, a, 02) for a Thomas process.

We may estimate 6 from a realisation x of X by:
@ Minimum contrast estimation based on g or K, that is

0 = argmin / - (&(r)?— ge(r)q)2 dr

¢ Fimin
~ *Fmax N 2
or 0 =argmin / (K(r)q - Kg(r)q> dr
O rmin

where typically g = 1/4, rmin = 0 and rmax is to be chosen.
@ Maximum likelihood estimation
A n(X)
0 = argmax E | el®I=/sNo(u)du H No(xi)
0

i=1

but this requires huge Monte-Carlo simulations to approximate E(.)
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© Point process models

@ Gibbs point processes
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Gibbs point processes

We speak of a Gibbs model when we define X through its density.
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Gibbs point processes

We speak of a Gibbs model when we define X through its density.

Examples :
e A PPP with intensity p(u) admits the density (wrt to Xo):

n(x)
f(x) = elSI=Js plu)du Hp(x,-) = cexp (Z |0g(ﬂ(“))>

uex

where ¢ does not depend on x. In the homogeneous case

f(x) = c exp(log(p) n(x)).
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Gibbs point processes

We speak of a Gibbs model when we define X through its density.

Examples :
e A PPP with intensity p(u) admits the density (wrt to Xo):

n(x)
f(x) = elSI=Js p(u)du Hp(x,-) =cexp (Z |0g(ﬂ(“))>

uex

where ¢ does not depend on x. In the homogeneous case
f(x) = c exp(log(p) n(x))-
@ We define an homogeneous pairwise interaction Gibbs model by

#
f(x) = c exp <Bn(x) + Z O(||u— v|)> ,

u,vex

where 8 > 0 is related (but not equal) to the log-intensity p of x,
and ® : R, — RU{—o00} is the pairwise interaction function.
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Pairwise interaction Gibbs models

Recall : the density wrt to Xq (i.e., the PPP with p =1) is

#
f(x) = cexp <Bn(X) + > O(llu— VI)> :

u,vex

Interpretation:
o If ® =0, then we're back to a PPP

o A realisation x will tend to maximise vaex O(|lu—v])
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Recall : the density wrt to Xq (i.e., the PPP with p =1) is

#
f(x) = cexp <Bn(X) + > O(llu— VI)> :

u,vex

Interpretation:
o If ® =0, then we're back to a PPP

o A realisation x will tend to maximise vaex O(|lu—v])

Existence: To have E(f(Xo)) = 1, we must ensure that

+
0<c ' :=E |exp | Bn(Xo)+ Z O([lu = v[]) | | < oo

u,veXo
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Pairwise interaction Gibbs models

Recall : the density wrt to Xq (i.e., the PPP with p =1) is

#
f(x) = cexp <Bn(X) + > O(llu— VI)> :

u,vex

Interpretation:
o If ® =0, then we're back to a PPP

o A realisation x will tend to maximise vaex O(|lu—v])

Existence: To have E(f(Xo)) = 1, we must ensure that

+4
0<c ' :=E |exp | Bn(Xo)+ Z O([lu = v[]) | | < oo
u,veXo

e ¢! > 0is always true since
¢t > E[...[n(Xo) = 0] P(n(Xo) = 0) = P(n(Xe) = 0) > 0.
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Pairwise interaction Gibbs models

Recall : the density wrt to Xq (i.e., the PPP with p =1) is

#
f(x) = cexp <Bn(X) + > O(llu— VI)> :

u,vex

Interpretation:
o If ® =0, then we're back to a PPP

o A realisation x will tend to maximise vaex O(|lu—v])

Existence: To have E(f(Xo)) = 1, we must ensure that

0<c ' :=E |exp | Bn(Xo)+ i O([Jlu—v]) || < oo.
u,veXo
e ¢! > 0is always true since
¢t > E[...[n(Xo) = 0] P(n(Xo) = 0) = P(n(Xe) = 0) > 0.
@ For ¢! < o0, a sufficient assumption is ® < 0, since then

c b < Elexp(B8n(Xo))] < 0.
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Example: the Strauss process

Strauss model with radius R > 0 and interaction parameter v < 0 when
<D(r) = ’}f’lrSR

so that
f(x) = c exp(Bn(x) + vsr(x)),

where sg(x) is the number of R-close pairs of points in x.

~ = log(0.8) ~ = log(0.5) ~v = log(0.2)
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Example: the Hardcore point process

The Hardcore model with radius R > 0 corresponds to

(D(r)_{oo ifr<R

0 otherwise

so that no pairs can occur at a distance less than R.

R =0.05 R=01
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Example: non pairwise interaction

We can consider more complicated density. For instance the area
interaction process, for R > 0 and v € R,

where the interaction depends on the volume of the union of balls.

U B(u.R)

uex

f(x) = c exp (/)’n(x) +7

v>0
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Gibbs point process: general properties

Advantages:
o Flexible models, easy to interpret
@ Mainly used to model inhibition between the points

@ But some Gibbs models can yield attraction between points

Drawbacks:
@ We do not know the moments (neither p, nor g, nor K)
@ Not easy to simulate (MCMC methods are needed)

@ In the density, we do not know explicitly c: this is problematic when
it comes to estimate a parameter 6 by MLE (since ¢ depends on 6)

@ Very hard to deal with in theory
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Gibbs point process: Papangelou conditional intensity

The Papangelou conditional intensity is defined for any v and x by
f(xUu)
f(x)

Intuitively, this is the probability to have a point at u given that the point
configuration otherwise is x.

AMu,x) =

The benefit of A over f is that A(u, x) does not depend on c.
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Gibbs point process: Papangelou conditional intensity

The Papangelou conditional intensity is defined for any v and x by

f(xUuw)
f(x)

AMu,x) =

Intuitively, this is the probability to have a point at u given that the point
configuration otherwise is x.

The benefit of A over f is that A(u, x) does not depend on c.

We can take advantage of that for:
@ parametric inference, through the pseudo-likelihood estimator:

n(x)
6 = argmax Z log Ao (xi,x \ xi) — / Ao (u, x)du.
0 S

i=1

(note the similarity with the log-likelihood of a PPP)
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Gibbs point process: Papangelou conditional intensity

The Papangelou conditional intensity is defined for any v and x by

f(xUuw)

AMu,x) = %)

Intuitively, this is the probability to have a point at u given that the point
configuration otherwise is x.

The benefit of A over f is that A(u, x) does not depend on c.

We can take advantage of that for:
@ parametric inference, through the pseudo-likelihood estimator:

n(x)
6 = argmax Z log Ao (xi,x \ xi) — / Ao (u, x)du.
0 S

i=1
(note the similarity with the log-likelihood of a PPP)

@ simulating X by a birth-death Metropolis-Hastings algorithm, where

o a birth proposal at u depends (positively) on A(u,x)
o a death proposal of x; € x depends (negatively) on A(xj,x \ x;).
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© Point process models

@ Determinantal point processes
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Determinantal point processes (DPPs)

The n-th order intensity p(") of a point process satisfies

#

E Z Licay. . uca, :/ / p(")(uh...,un)du1'~du,,,
JA, JA,

VAi,...,A;, CS. Intuitively, p(”)(ul, cootn) = P({u, .o un} CX).

A DPP is defined through the intensities p(").
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Determinantal point processes (DPPs)

The n-th order intensity p(") of a point process satisfies

+
E Z 1u1€A1....,un€A / / U17 ,,)dul <o du,,,
A1
VAi,...,A;, CS. Intuitively, p(”)(ul, cootn) = P({u, .o un} CX).
A DPP is defined through the intensities p(").

Let C(u, v) be a covariance function. X is a DPP with kernel C if

vn>1, p(u,..., u,) = det[C(u;, uj)

]1§i.j§n’

where [C(u;, uj)];<; <, denotes the n x n matrix with entries C(u;, u;).
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Stationary DPPs

Recall: X is a DPP with kernel C if

Vn>1, p(")(ul, ooy Up) =det[C(u;, “j)]1giﬁjgn'

If C(u,v)= C(||u—v]), then X is stationary, isotropic and
e its intensity is p(u) = p = C(0)
e its second order intensity p(? is

p(2)(u., v) = det (C(Hi(O)\/) C(é’(g)VD) = C(0)>~C(JJu—v|)>

@ Hence its pcf is, for r = |ju—v|, is
@) (u,v C(r)?
(U B <
o()p(v) c(0)

Since g < 1, DPPs are models for inhibitive point processes.
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Stationary DPPs: example

Existence: C(r) must be a covariance function such that F(C) < 1.
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Stationary DPPs: example

Existence: C(r) must be a covariance function such that F(C) < 1.

Example: The Gaussian-type DPP ..
The Gaussian covariance function C(r) = pe™"/®" with mpa? < 1

defines the DPP with intensity p and pcf g(r)=1—e

—2r*/a?

small o

medium «

large «
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Density of a DPP

In theory, the kernel C admits the eigen-decomposition on S

Clu,v) =D MDu(u)®u(v), u,veES, (1)

k>1

where 0 < Ay < 1 and () is an orthonormal basis of L?(S).

63 /67



Density of a DPP

In theory, the kernel C admits the eigen-decomposition on S

Clu,v) =D MDu(u)®u(v), u,veES, (1)

k>1

where 0 < Ay < 1 and () is an orthonormal basis of L?(S).

From this decomposition we can:
@ implement a perfect simulation algorithm ;

63 /67



Density of a DPP

In theory, the kernel C admits the eigen-decomposition on S
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k>1

where 0 < Ay < 1 and () is an orthonormal basis of L?(S).

From this decomposition we can:
@ implement a perfect simulation algorithm ;

@ deduce the density of the DPP when A\, < 1, that is
f(X) = cdet [L(Xi7 )9')]1§i7j§,, s
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Density of a DPP

In theory, the kernel C admits the eigen-decomposition on S
Clu,v) =D MDu(u)®u(v), u,veES, (1)
k>1

where 0 < Ay < 1 and () is an orthonormal basis of L?(S).

From this decomposition we can:
@ implement a perfect simulation algorithm ;

@ deduce the density of the DPP when A\, < 1, that is
f(x) = cdet [L(Xf7)g)]1§i,j§n7

where ¢ = ell [Ix>1(1 = Ax) and L is another kernel defined by

Luv)=>" : :\k)\dek(u)de(v), uves.

But (1) is rarely known, unless C is defined through it.
Approximations exist in the stationary case C(u,v) = C(|lu — v|]).

63 /67



DPP: inference

Let a parametric DPP X with parameter 6.
For instance 6 = (p, ) for a Gaussian-type DPP.

We may estimate 6 from a realisation x of X by:
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DPP: inference

Let a parametric DPP X with parameter 6.
For instance 6 = (p, ) for a Gaussian-type DPP.

We may estimate 6 from a realisation x of X by:
@ Minimum contrast estimation based on g or K, that is

6 = argmin / - (&(r)?— ge(r)q)2 dr

0 Fimin
N *Fmax N 2
or 0 =argmin / (K(r)q - K()(r)q> dr
O Jrmin

where typically g = 1/2, rmin = 0 and rmax is to be chosen.

@ MLE, if we know the eigen-decomposition of C:

0 = argmax fy(x).
0
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© Point process models

@ Short summary
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Models Main features p, g& | density
Poisson Only for CSR. v v
Cox Attraction, clusters. v X

(LGCP, Matérn, Thomas)

Gibbs Very flexible. X 1
Mainly inhibition
but attraction possible.

DPP Inhibition. v 2
Less flexible than Gibbs.

Lup to the constant; Papangelou conditional density is rather used for inference.
2if we know the eigen-decomposition of the kernel.
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All illustrations have been implemented with the spatstat library in R.
Almost all presented datasets also come from this library.
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