A short introduction to models and inference for spatial point processes.

Frédéric Lavancier

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

Opint process models

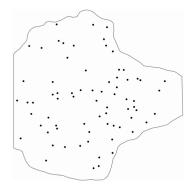
- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

- D.J Daley and D. Vere-Jones. *An introduction to the Theory of Point Processes.* Springer Series in Statistics, 1998.
- J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2004.
- A. Baddeley, E. Rubak, and R. Turner. *Spatial Point Patterns : Methodology and Applications with R.* CRC Press, 2015.

All illustrations have been implemented with the **spatstat library** in **R**. Almost all presented datasets also come from this library.

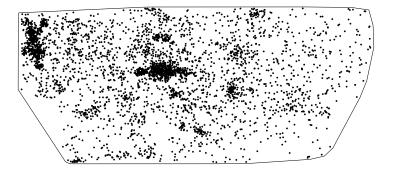
Some examples of point patterns: 2D

Locations of some (Langerin) proteins in a living cell.



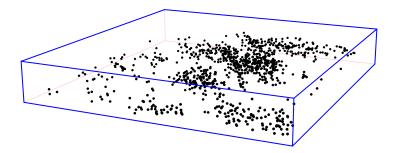
Some examples of point patterns: 2D

Positions of 4215 galaxies in the Shapley Supercluster.



Some examples of point patterns: 3D

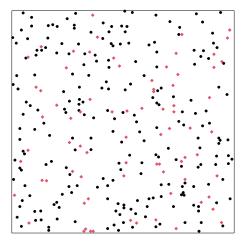
Locations of nucleosomes in a cell nucleus of a brain.



Some examples of point patterns: with discrete marks

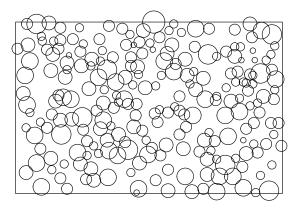
Cell nuclei in hamster kidney, subject to a metastatic lymphoma.

In black: "dividing" cells In red: "pyknotic" cells, i.e. dying cells



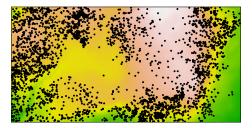
Some examples of point patterns: continuous marks

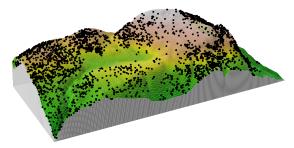
Locations and diameters of sea anemones (at Quiberon)



Some examples of point patterns: with auxiliary information

Locations of **trees** in a tropical rain forest. Auxiliary information: **elevation** in the study region





In this presentation, for simplicity:

- we work on a **bounded** set $S \subset \mathbb{R}^d$ (typically d = 2)
- the point patterns are simple (no duplicated points)
- there is no mark (neither discrete, nor continuous)
- there are no auxiliary information (no covariate)
- we do not consider temporal, nor space-time, point processes

The main goal is to analyse/model the repartition of points.

A point pattern x in S is a locally finite subset of S.

Denoting by n(A) the cardinality of any set $A \subseteq S$, this means:

$$\begin{cases} \mathbf{x} \subset S, \\ \text{for all } A \subseteq S, \ n(\mathbf{x} \cap A) < \infty. \end{cases}$$

Hence, it makes sense to write $\mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}$ where $n(\mathbf{x}) = n(\mathbf{x} \cap S)$ and $x_i \in S$ for all $i = 1, \dots, n(\mathbf{x})$. A point pattern x in S is a locally finite subset of S.

Denoting by n(A) the cardinality of any set $A \subseteq S$, this means:

$$\begin{cases} \mathbf{x} \subset S, \\ \text{for all } A \subseteq S, \ n(\mathbf{x} \cap A) < \infty. \end{cases}$$

Hence, it makes sense to write $\mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}$ where $n(\mathbf{x}) = n(\mathbf{x} \cap S)$ and $x_i \in S$ for all $i = 1, \dots, n(\mathbf{x})$.

A spatial point process X is a random point pattern in S.

- The number of points $n(\mathbf{X})$ is random.
- The locations of the points in S are random.

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

3 Point process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

The first order intensity ρ answers two questions:

- How many points can be expected?
- Where are the points more likely to occur?

First order intensity ρ

The first order intensity ρ answers two questions:

- How many points can be expected?
- Where are the points more likely to occur?

By definition, the intensity ρ satisfies:

$$\forall A \subseteq S, \quad \mathbb{E}(n(\mathbf{X} \cap A)) = \mathbb{E}\left(\sum_{u \in \mathbf{X}} \mathbf{1}_{u \in A}\right) = \int_{A} \rho(u) du.$$

Intuitively, for $u \in S$, $\rho(u) \approx \mathbb{P}(X \text{ has a point at } u)$.

In particular: $\mathbb{E}(n(\mathbf{X})) = \int_{S} \rho(u) du$.

First order intensity ρ

An important special case : the homogeneous case

 $\rho(u) = \rho \quad \text{for any } u \in S.$

Then,

- for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \rho|A|$
- the points are equally likely to appear anywhere.

First order intensity ρ

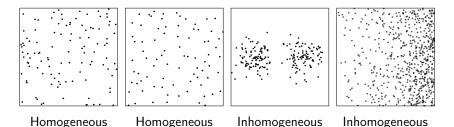
An important special case : the homogeneous case

 $\rho(u) = \rho \quad \text{for any } u \in S.$

Then,

- for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \rho|A|$
- the points are equally likely to appear anywhere.

Otherwise, the point process is inhomogeneous.



Assume we observe a realisation **x** of **X** in *S*. How can we estimate ρ ?

Assume we observe a realisation **x** of **X** in *S*. How can we estimate ρ ?

If **X** is assumed to be homogeneous : $\hat{\rho} = n(\mathbf{x})/|S|$.

Assume we observe a realisation **x** of **X** in *S*. How can we estimate ρ ?

If **X** is assumed to be homogeneous : $\hat{\rho} = n(\mathbf{x})/|S|$.

- If **X** is **not** assumed to be homogeneous:
 - non parametric estimation of $u \mapsto \rho(u)$: for a density kernel k (typically the standard Gaussian density), and a bandwidth h > 0,

$$\hat{\rho}(u) = \sum_{v \in \mathbf{x}} \frac{1}{h^d} k\left(\frac{v-u}{h}\right) / K_h(v), \quad u \in S,$$

where $K_h(v) = h^{-d} \int_S k\left(\frac{v-u}{h}\right) du$ accounts for edge effects $(K_h(v) \approx 1 \text{ if } v \text{ is far from the border of } S).$

Remark: $\int_{S} \hat{\rho}(u) du = n(x)$ in agreement with $\int_{S} \rho(u) du = \mathbb{E}(n(x))$. The choice of *h* is crucial: adaptive choices are available.

Assume we observe a realisation **x** of **X** in *S*. How can we estimate ρ ?

If **X** is assumed to be homogeneous : $\hat{\rho} = n(\mathbf{x})/|S|$.

- If **X** is **not** assumed to be homogeneous:
 - non parametric estimation of $u \mapsto \rho(u)$: for a density kernel k (typically the standard Gaussian density), and a bandwidth h > 0,

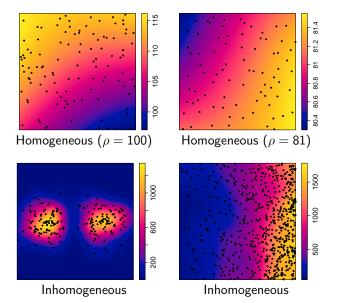
$$\hat{\rho}(u) = \sum_{v \in \mathbf{x}} \frac{1}{h^d} k\left(\frac{v-u}{h}\right) / K_h(v), \quad u \in S,$$

where $K_h(v) = h^{-d} \int_S k\left(\frac{v-u}{h}\right) du$ accounts for edge effects $(K_h(v) \approx 1 \text{ if } v \text{ is far from the border of } S).$

Remark: $\int_{S} \hat{\rho}(u) du = n(x)$ in agreement with $\int_{S} \rho(u) du = \mathbb{E}(n(x))$. The choice of *h* is crucial: adaptive choices are available.

if that makes sense, we can assume a parametric form for ρ(u), i.e. ρ(u) = ρ_θ(u), and estimate the parameter θ by specific methods.
 Ex: ρ_θ(u) = exp(θ₁z₁(u) + θ₂z₂(u)) where z₁, z₂ are auxiliary variables.

Examples of non-parametric estimation of the intensity



Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

3 Point process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

Second order moments : the second order intensity

Aim: analyse the **interaction** between the points (\approx spatial covariance)

Second order moments : the second order intensity

Aim: analyse the **interaction** between the points (pprox spatial covariance)

The second order intensity $\rho^{(2)}(u, v)$ satisfies

$$\forall A, B \subseteq S, \quad \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \mathbf{1}_{u\in A, v\in B}\right) = \int_{A} \int_{B} \rho^{(2)}(u,v) du dv.$$

Intuitively, $\rho^{(2)}(u, v) \approx P(X \text{ has a point at } u \text{ and a point at } v)$.

Second order moments : the second order intensity

Aim: analyse the **interaction** between the points (pprox spatial covariance)

The second order intensity $\rho^{(2)}(u, v)$ satisfies

$$\forall A, B \subseteq S, \quad \mathbb{E}\left(\sum_{u,v \in \mathbf{X}}^{\neq} \mathbf{1}_{u \in A, v \in B}\right) = \int_{A} \int_{B} \rho^{(2)}(u,v) du dv.$$

Intuitively, $\rho^{(2)}(u, v) \approx P(\mathbf{X} \text{ has a point at } u \text{ and a point at } v)$.

Interpretation:

• If the points are located independently of each other, then

 $\rho^{(2)}(u,v) = \rho(u)\rho(v)$

• If there is a positive dependence (attraction), then

 $\rho^{(2)}(u,v) > \rho(u)\rho(v)$

• If there is a negative dependence (inhibition), then

 $\rho^{(2)}(u,v) < \rho(u)\rho(v)$

Second order moments: the pcf

In spatial statistics, we rather use the pair correlation function (pcf) g

$$g(u,v) = \frac{\rho^{(2)}(u,v)}{\rho(u)\rho(v)}.$$

- If g(u, v) = 1, there is no interaction between u and v,
- If g(u, v) > 1, there is attraction,
- If g(u, v) < 1, there is inhibition.

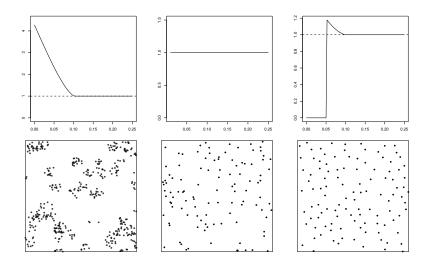
In most applications, it is assumed that g(u, v) only depends on ||u - v||. We then simply define for r > 0

$$g(r) = rac{
ho^{(2)}(u,v)}{
ho(u)
ho(v)} \quad ext{for } \|u-v\| = r.$$

This is the case for a stationary and isotropic point process.

Second order moments: the pcf

Examples of theoretical pcf g, with one realisation for each.



Assume that **X** is stationary and isotropic, with intensity ρ .

The **Ripley's** K function is defined for any r > 0 by

 $\rho K(r) =$ expected number of neighbours within distance r of a point $u \in \mathbf{X}$.

Assume that **X** is stationary and isotropic, with intensity ρ .

The **Ripley's** K function is defined for any r > 0 by

 $\rho K(r) =$ expected number of neighbours within distance r of a point $u \in \mathbf{X}$.

Mathematically, denoting B(u, R) the ball centred at u with radius R,

$$egin{aligned} \mathcal{K}(r) &= rac{1}{
ho} \, \mathbb{E} \Big(n(\mathbf{X} \cap B(u,r)) - 1 \Big| u \in \mathbf{X} \Big), \ &= rac{1}{
ho} \, \mathbb{E} \Big(n(\mathbf{X} \cap B(0,r)) - 1 \Big| 0 \in \mathbf{X} \Big) & ext{by stationarity of } \mathbf{X}. \end{aligned}$$

Assume that **X** is stationary and isotropic, with intensity ρ .

The **Ripley's** K function is defined for any r > 0 by

 $\rho K(r) =$ expected number of neighbours within distance r of a point $u \in \mathbf{X}$.

Mathematically, denoting B(u, R) the ball centred at u with radius R,

$$egin{aligned} \mathcal{K}(r) &= rac{1}{
ho} \, \mathbb{E}\Big(n(\mathbf{X} \cap B(u,r)) - 1 \Big| u \in \mathbf{X} \Big), \ &= rac{1}{
ho} \, \mathbb{E}\Big(n(\mathbf{X} \cap B(0,r)) - 1 \Big| 0 \in \mathbf{X} \Big) & ext{by stationarity of } \mathbf{X}. \end{aligned}$$

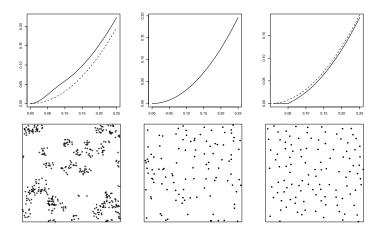
We can prove that

$$K(r) = \int_{B(0,r)} g(||u||) du = d\omega_d \int_0^r t^{d-1} g(t) dt$$

where $\omega_d = |B(0,1)| = \pi^{d/2} / \Gamma(1 + d/2).$

Remember: $g(r) = 1 \Rightarrow$ no interaction. So:

 $\begin{cases} \mathcal{K}(r) = \omega_d r^d \Rightarrow \text{ no interaction}, \\ \mathcal{K}(r) > \omega_d r^d \Rightarrow \text{ attraction}, \\ \mathcal{K}(r) < \omega_d r^d \Rightarrow \text{ repulsion}. \end{cases}$



Second order moments: estimation of K(r)

Since

 $\rho K(r) =$ expected number of neighbours within distance r of a point $u \in \mathbf{X}$, a natural estimator for K(r) based on a realisation \mathbf{x} is

$$\tilde{\mathcal{K}}(r) = \frac{1}{\hat{\rho}} \frac{1}{n(\mathbf{x})} \sum_{u \in \mathbf{x}} \left[n(\mathbf{x} \cap B(u, r)) - 1 \right] = \frac{1}{\hat{\rho}} \frac{1}{n(\mathbf{x})} \sum_{u, v \in \mathbf{x}}^{\neq} \mathbf{1}_{||u-v|| < r}.$$

Since

 $\rho K(r) =$ expected number of neighbours within distance r of a point $u \in \mathbf{X}$, a natural estimator for K(r) based on a realisation \mathbf{x} is

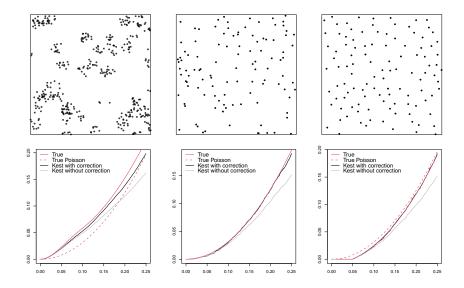
$$\tilde{\mathcal{K}}(r) = \frac{1}{\hat{\rho}} \frac{1}{n(\mathsf{x})} \sum_{u \in \mathsf{x}} \left[n(\mathsf{x} \cap B(u, r)) - 1 \right] = \frac{1}{\hat{\rho}} \frac{1}{n(\mathsf{x})} \sum_{u, v \in \mathsf{x}}^{\neq} \mathbf{1}_{||u-v|| < r}.$$

But there are edge effects! One solution is to use:

$$\hat{K}(r) = \frac{1}{\hat{\rho}^2} \sum_{u,v \in \mathbf{x}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|},$$

where $S_{u-v} = S + (u - v)$ is the translation of S by (u - v).

Second order moments: estimation of K(r)



$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|}\right)$$

$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|}\right)$$

(by def of $\rho^{(2)}$) $= \int_{S} \int_{S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} \rho^{(2)}(u,v) du dv$

$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{\Vert u-v\Vert < r}}{|S \cap S_{u-v}|}\right)$$

(by def of $\rho^{(2)}$)
$$= \int_{S} \int_{S} \frac{\mathbf{1}_{\Vert u-v\Vert < r}}{|S \cap S_{u-v}|} \rho^{(2)}(u,v) du dv$$
$$= \rho^{2} \int \int \mathbf{1}_{u\in S} \mathbf{1}_{v\in S} \frac{\mathbf{1}_{\Vert u-v\Vert < r}}{|S \cap S_{u-v}|} g(\Vert u-v\Vert) du dv$$

$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|}\right)$$
(by def of $\rho^{(2)}$)
$$= \int_{S} \int_{S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} \rho^{(2)}(u,v) du dv$$

$$= \rho^{2} \int \int \mathbf{1}_{u\in S} \mathbf{1}_{v\in S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} g(||u-v||) du dv$$

$$(w = u - v) = \rho^{2} \int \int \mathbf{1}_{u\in S} \mathbf{1}_{u-w\in S} \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) du dw$$

$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|}\right)$$

(by def of $\rho^{(2)}$) $= \int_{S} \int_{S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} \rho^{(2)}(u,v) du dv$
 $= \rho^{2} \int \int \mathbf{1}_{u \in S} \mathbf{1}_{v \in S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} g(||u-v||) du dv$
 $(w = u - v) = \rho^{2} \int \int \mathbf{1}_{u \in S} \mathbf{1}_{u-w \in S} \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) du dw$
 $= \rho^{2} \int \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) \left(\int \mathbf{1}_{u \in S \cap S_{w}} du\right) dw$

$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|}\right)$$

(by def of $\rho^{(2)}$) $= \int_{S} \int_{S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} \rho^{(2)}(u,v) du dv$
 $= \rho^{2} \int \int \mathbf{1}_{u \in S} \mathbf{1}_{v \in S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} g(||u-v||) du dv$
 $(w = u - v) = \rho^{2} \int \int \mathbf{1}_{u \in S} \mathbf{1}_{u-w \in S} \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) du dw$
 $= \rho^{2} \int \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) \left(\int \mathbf{1}_{u \in S \cap S_{w}} du\right) dw$
 $= \rho^{2} \int \mathbf{1}_{||w|| < r} g(||w||) \frac{|S \cap S_{w}|}{|S \cap S_{w}|} dw$

$$\mathbb{E}\left(\hat{\rho}^{2}\hat{K}(r)\right) = \mathbb{E}\left(\sum_{u,v\in\mathbf{X}}^{\neq} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|}\right)$$

(by def of $\rho^{(2)}$) $= \int_{S} \int_{S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} \rho^{(2)}(u,v) du dv$
 $= \rho^{2} \int \int \mathbf{1}_{u \in S} \mathbf{1}_{v \in S} \frac{\mathbf{1}_{||u-v|| < r}}{|S \cap S_{u-v}|} g(||u-v||) du dv$
 $(w = u - v) = \rho^{2} \int \int \mathbf{1}_{u \in S} \mathbf{1}_{u-w \in S} \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) du dw$
 $= \rho^{2} \int \frac{\mathbf{1}_{||w|| < r}}{|S \cap S_{w}|} g(||w||) \left(\int \mathbf{1}_{u \in S \cap S_{w}} du\right) dw$
 $= \rho^{2} \int \mathbf{1}_{||w|| < r} g(||w||) \frac{|S \cap S_{w}|}{|S \cap S_{w}|} dw$
 $= \rho^{2} \mathcal{K}(r).$

Assume again that **X** is stationary and isotropic, with intensity ρ .

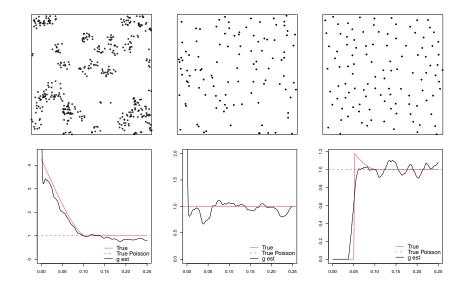
Remember that $g(r) = \rho^{(2)}(u, v)/\rho^2$ where r = ||u - v||.

For a kernel k (e.g. a Gaussian density) and a bandwidth h > 0,

$$\hat{g}(r) = \frac{1}{\hat{\rho}^2} \frac{1}{d\omega_d r^{d-1}} \sum_{u,v \in \mathbf{x}}^{\neq} \frac{1}{h^d} k\left(\frac{\|v-u\|-r}{h}\right) \frac{1}{|S \cap S_{u-v}|}$$

Red term: due to polar coordinates ($\omega_d = |B(0,1)|$) Blue term: same edge correction as before The sum: we are "counting" the number of pairs (u, v) at distance $\approx r$.

As for all non-parametric method, the choice of h is crucial.



Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

3 Point process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

Other summary statistics

Assume again that **X** is stationary and isotropic, with intensity ρ .

- The L-function: $L(r) = (K(r)/\omega_d)^{1/d}$, with $\omega_d = |B(0,1)|$.
- The empty space function

 $F(r) = \mathbb{P}(n(\mathbf{X} \cap B(0, r)) > 0).$

• The nearest neighbour distribution function

 $G(r) = \mathbb{P}(n(\mathbf{X} \cap B(0,r)) > 1 \mid 0 \in \mathbf{X}).$

• The *J*-function: J(r) = (1 - G(r))/(1 - F(r)).

Interpretation:

No interaction : $L_0(r) = r$, $F_0(r) = G_0(r) = 1 - e^{-\rho\omega_d r^d}$ and $J_0(r) = 1$. Attraction if L(r) > r, $F(r) < F_0(r)$, $G(r) > G_0(r)$, J(r) < 1. Inhibition if L(r) < r, $F(r) > F_0(r)$, $G(r) < G_0(r)$, J(r) > 1.

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

Point process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

For each of the considered models, the main questions are:

- What are its main characteristics: attraction? inhibition?
- Do we know its moments (e.g. ρ and g)?
- How can we simulate a realisation?
- How can we fit this model to a point pattern?

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

3 Point process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

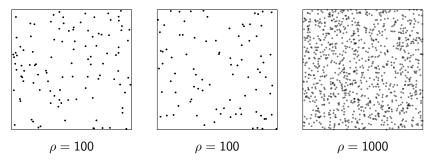
Homogeneous Poisson point process

A homogeneous PPP **X** with intensity ρ on S satisfies:

•
$$n(\mathbf{X}) \sim \mathcal{P}(\rho|S|)$$
, i.e.

$$P(n(\mathbf{X}) = k) = e^{-\rho|S|} \frac{(\rho|S|)^k}{k!}, \quad \forall k = 0, 1, 2, \dots,$$

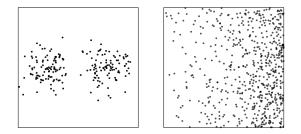
• Given $n(\mathbf{X}) = n$, $\{x_1, \dots, x_n\}$ are **independent** and uniform in *S*. The simulation is straightforward.



Inhomogeneous Poisson point process

An inhomogeneous PPP with intensity function $\rho(u)$ on S satisfies:

- $n(\mathbf{X}) \sim \mathcal{P}(\int_{S} \rho(u) du)$,
- Given $n(\mathbf{X}) = n$, $\{x_1, \dots, x_n\}$ are **independently** distributed in *S* according to the density $u \mapsto \rho(u)/(\int_S \rho(u) du)$.



For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$.

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$. Denoting $c = \int_S \rho(u) du$ so that $n(\mathbf{X}) \sim \mathcal{P}(c)$,

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \sum_{n \ge 0} \mathbb{E}(n(\mathbf{X} \cap A) | n(\mathbf{X}) = n) \mathbb{P}(n(\mathbf{X}) = n)$$

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$. Denoting $c = \int_S \rho(u) du$ so that $n(\mathbf{X}) \sim \mathcal{P}(c)$,

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \sum_{n \ge 0} \mathbb{E}(n(\mathbf{X} \cap A) | n(\mathbf{X}) = n) \mathbb{P}(n(\mathbf{X}) = n)$$
$$= \sum_{n \ge 0} n \int_{A} \frac{\rho(u)}{c} du \, e^{-c} \frac{c^{n}}{n!} \quad \left(\text{since } x_{i} | n(\mathbf{X}) \text{ are iid} \sim \frac{\rho(u)}{c}\right)$$

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$. Denoting $c = \int_S \rho(u) du$ so that $n(\mathbf{X}) \sim \mathcal{P}(c)$,

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \sum_{n \ge 0} \mathbb{E}(n(\mathbf{X} \cap A) | n(\mathbf{X}) = n) \mathbb{P}(n(\mathbf{X}) = n)$$
$$= \sum_{n \ge 0} n \int_{A} \frac{\rho(u)}{c} du \, e^{-c} \frac{c^{n}}{n!} \quad \left(\text{since } x_{i} | n(\mathbf{X}) \text{ are iid} \sim \frac{\rho(u)}{c}\right)$$
$$= \left(\int_{A} \rho(u) du\right) \sum_{n \ge 1} e^{-c} \frac{c^{n-1}}{(n-1)!} = \int_{A} \rho(u) du.$$

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$. Denoting $c = \int_S \rho(u) du$ so that $n(\mathbf{X}) \sim \mathcal{P}(c)$,

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \sum_{n \ge 0} \mathbb{E}(n(\mathbf{X} \cap A) | n(\mathbf{X}) = n) \mathbb{P}(n(\mathbf{X}) = n)$$
$$= \sum_{n \ge 0} n \int_{A} \frac{\rho(u)}{c} du \, e^{-c} \frac{c^{n}}{n!} \quad \left(\text{since } x_{i} | n(\mathbf{X}) \text{ are iid} \sim \frac{\rho(u)}{c}\right)$$
$$= \left(\int_{A} \rho(u) du\right) \sum_{n \ge 1} e^{-c} \frac{c^{n-1}}{(n-1)!} = \int_{A} \rho(u) du.$$

• The second order intensity function is $\rho^{(2)}(u, v) = \rho(u)\rho(v)$.

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$. Denoting $c = \int_S \rho(u) du$ so that $n(\mathbf{X}) \sim \mathcal{P}(c)$,

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \sum_{n \ge 0} \mathbb{E}(n(\mathbf{X} \cap A) | n(\mathbf{X}) = n) \mathbb{P}(n(\mathbf{X}) = n)$$
$$= \sum_{n \ge 0} n \int_{A} \frac{\rho(u)}{c} du \, e^{-c} \frac{c^{n}}{n!} \quad \left(\text{since } x_{i} | n(\mathbf{X}) \text{ are iid} \sim \frac{\rho(u)}{c}\right)$$
$$= \left(\int_{A} \rho(u) du\right) \sum_{n \ge 1} e^{-c} \frac{c^{n-1}}{(n-1)!} = \int_{A} \rho(u) du.$$

The second order intensity function is ρ⁽²⁾(u, v) = ρ(u)ρ(v).
Hence g(r) = 1 for all r > 0 and K(r) = dω_dr^d.

For a PPP with intensity function $\rho(u)$:

• The intensity function is indeed $\rho(u)$.

We need to prove that for any $A \subseteq S$, $\mathbb{E}(n(\mathbf{X} \cap A)) = \int_A \rho(u) du$. Denoting $c = \int_S \rho(u) du$ so that $n(\mathbf{X}) \sim \mathcal{P}(c)$,

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \sum_{n \ge 0} \mathbb{E}(n(\mathbf{X} \cap A) | n(\mathbf{X}) = n) \mathbb{P}(n(\mathbf{X}) = n)$$
$$= \sum_{n \ge 0} n \int_{A} \frac{\rho(u)}{c} du \, e^{-c} \frac{c^{n}}{n!} \quad \left(\text{since } x_{i} | n(\mathbf{X}) \text{ are iid} \sim \frac{\rho(u)}{c}\right)$$
$$= \left(\int_{A} \rho(u) du\right) \sum_{n \ge 1} e^{-c} \frac{c^{n-1}}{(n-1)!} = \int_{A} \rho(u) du.$$

The second order intensity function is ρ⁽²⁾(u, v) = ρ(u)ρ(v).
Hence g(r) = 1 for all r > 0 and K(r) = dω_dr^d.

PPP is the default model for non-interacting points, i.e. Complete Spatial Randomness (CSR).

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

$$\mathbb{E}(h(\mathsf{X}_0)f(\mathsf{X}_0)) = \sum_{n\geq 0} \mathbb{E}(h(\mathsf{X}_0)f(\mathsf{X}_0)|n(\mathsf{X}_0) = n) \mathbb{P}(n(\mathsf{X}_0) = n)$$

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

$$\mathbb{E}(h(\mathbf{X}_0)f(\mathbf{X}_0)) = \sum_{n\geq 0} \mathbb{E}(h(\mathbf{X}_0)f(\mathbf{X}_0)|n(\mathbf{X}_0) = n) \mathbb{P}(n(\mathbf{X}_0) = n)$$
$$= \sum_{n\geq 0} \int_{S^n} h(u_1,\ldots,u_n)f(u_1,\ldots,u_n)\frac{du_1}{|S|} \cdots \frac{du_n}{|S|} e^{-|S|} \frac{|S|^n}{n!}$$

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

(

$$\mathbb{E}(h(\mathbf{X}_0)f(\mathbf{X}_0)) = \sum_{n\geq 0} \mathbb{E}(h(\mathbf{X}_0)f(\mathbf{X}_0)|n(\mathbf{X}_0) = n) \mathbb{P}(n(\mathbf{X}_0) = n)$$
$$= \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n)f(u_1, \dots, u_n)\frac{du_1}{|S|} \dots \frac{du_n}{|S|} e^{-|S|}\frac{|S|^n}{n!}$$
$$c = \int_{S} \rho(u)du) = \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n)e^{-c} \prod_{i=1}^n \rho(u_i)du_i \frac{1}{n!}$$

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

$$\mathbb{E}(h(\mathbf{X}_{0})f(\mathbf{X}_{0})) = \sum_{n\geq 0} \mathbb{E}(h(\mathbf{X}_{0})f(\mathbf{X}_{0})|n(\mathbf{X}_{0}) = n) \mathbb{P}(n(\mathbf{X}_{0}) = n)$$

$$= \sum_{n\geq 0} \int_{S^{n}} h(u_{1}, \dots, u_{n})f(u_{1}, \dots, u_{n})\frac{du_{1}}{|S|} \dots \frac{du_{n}}{|S|} e^{-|S|} \frac{|S|^{n}}{n!}$$

$$(c = \int_{S} \rho(u)du) = \sum_{n\geq 0} \int_{S^{n}} h(u_{1}, \dots, u_{n})e^{-c} \prod_{i=1}^{n} \rho(u_{i})du_{i} \frac{1}{n!}$$

$$= \sum_{n\geq 0} \int_{S^{n}} h(u_{1}, \dots, u_{n}) \prod_{i=1}^{n} \frac{\rho(u_{i})}{c}du_{i} \frac{1}{n!}c^{n}e^{-c}$$

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

$$\mathbb{E}(h(\mathsf{X}_0)f(\mathsf{X}_0)) = \sum_{n\geq 0} \mathbb{E}(h(\mathsf{X}_0)f(\mathsf{X}_0)|n(\mathsf{X}_0) = n) \mathbb{P}(n(\mathsf{X}_0) = n)$$

$$= \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n)f(u_1, \dots, u_n) \frac{du_1}{|S|} \dots \frac{du_n}{|S|} e^{-|S|} \frac{|S|^n}{n!}$$

$$(c = \int_{S} \rho(u)du) = \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n) e^{-c} \prod_{i=1}^n \rho(u_i)du_i \frac{1}{n!}$$

$$= \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n) \prod_{i=1}^n \frac{\rho(u_i)}{c} du_i \frac{1}{n!} c^n e^{-c}$$

$$= \sum_{n\geq 0} \mathbb{E}(h(\mathsf{X})|n(\mathsf{X}) = n) \mathbb{P}(n(\mathsf{X}) = n)$$

The reference point process \mathbf{X}_0 is the PPP with intensity $\rho = 1$.

A PPP **X** with intensity function $\rho(u)$ admits the density wrt **X**₀:

$$f(\mathbf{x}) = e^{|S| - \int_S \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

Proof:

$$\mathbb{E}(h(\mathsf{X}_0)f(\mathsf{X}_0)) = \sum_{n\geq 0} \mathbb{E}(h(\mathsf{X}_0)f(\mathsf{X}_0)|n(\mathsf{X}_0) = n) \mathbb{P}(n(\mathsf{X}_0) = n)$$

$$= \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n)f(u_1, \dots, u_n) \frac{du_1}{|S|} \dots \frac{du_n}{|S|} e^{-|S|} \frac{|S|^n}{n!}$$

$$(c = \int_{S} \rho(u)du) = \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n) e^{-c} \prod_{i=1}^n \rho(u_i)du_i \frac{1}{n!}$$

$$= \sum_{n\geq 0} \int_{S^n} h(u_1, \dots, u_n) \prod_{i=1}^n \frac{\rho(u_i)}{c} du_i \frac{1}{n!} c^n e^{-c}$$

$$= \sum_{n\geq 0} \mathbb{E}(h(\mathsf{X})|n(\mathsf{X}) = n) \mathbb{P}(n(\mathsf{X}) = n) = \mathbb{E}(h(\mathsf{X}))$$

Poisson point process: inference

The only parameter to fit is the intensity function $\rho(u)$.

Poisson point process: inference

The only parameter to fit is the intensity function $\rho(u)$.

Given $\mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}$, the log-likelihood is

$$\log f(\mathbf{x}) = |S| - \int_{S} \rho(u) du + \sum_{i=1}^{n(\mathbf{x})} \log \rho(x_i)$$

Poisson point process: inference

The only parameter to fit is the intensity function $\rho(u)$.

Given $\mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}$, the log-likelihood is

$$\log f(\mathbf{x}) = |S| - \int_{S} \rho(u) du + \sum_{i=1}^{n(\mathbf{x})} \log \rho(x_i)$$

• For a homogeneous PPP ($\rho(u) = \rho$), $\hat{\rho} = n(\mathbf{x})/|S|$ is the MLE.

Poisson point process: inference

The only parameter to fit is the intensity function $\rho(u)$.

Given $\mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}$, the log-likelihood is

$$\log f(\mathbf{x}) = |S| - \int_{S} \rho(u) du + \sum_{i=1}^{n(\mathbf{x})} \log \rho(x_i)$$

- For a homogeneous PPP ($\rho(u) = \rho$), $\hat{\rho} = n(\mathbf{x})/|S|$ is the MLE.
- For a parametric inhomogeneous PPP ($\rho(u) = \rho_{\theta}(u)$),

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n(\mathbf{x})} \log \rho_{\theta}(x_i) - \int_{S} \rho_{\theta}(u) du$$

Poisson point process: inference

The only parameter to fit is the intensity function $\rho(u)$.

Given $\mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}$, the log-likelihood is

$$\log f(\mathbf{x}) = |S| - \int_{S} \rho(u) du + \sum_{i=1}^{n(\mathbf{x})} \log \rho(x_i)$$

- For a homogeneous PPP ($\rho(u) = \rho$), $\hat{\rho} = n(\mathbf{x})/|S|$ is the MLE.
- For a parametric inhomogeneous PPP ($\rho(u) = \rho_{\theta}(u)$),

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n(\mathsf{x})} \log \rho_{\theta}(\mathbf{x}_i) - \int_{S} \rho_{\theta}(u) du$$

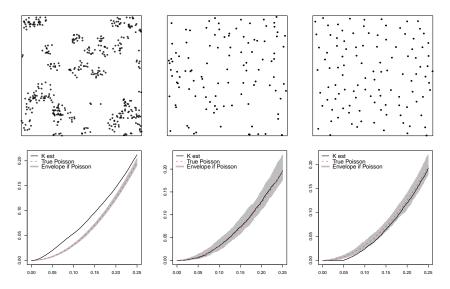
• For a general inhomogeneous PPP: non-parametric estimator

$$\hat{\rho}(u) = \sum_{v \in \mathbf{x}} \frac{1}{h^d} k\left(\frac{v-u}{h}\right) / K_h(v), \quad u \in S.$$

- Is a (Poisson) model a good fit to a point pattern?
 - Fit the model.
 - Simulate many realisations from the fitted model.
 - **②** Compute a descriptor for each realisation, for instance $\hat{K}(r)$ or $\hat{g}(r)$.
 - Check if the same descriptor for the data is consistent with these simulations.

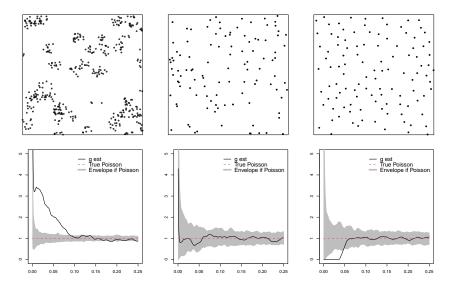
Poisson point process: validation

We fit a homogeneous PPP to these point patterns, and check with K



Poisson point process: validation

idem with g



Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

Oint process models

• Poisson point process (PPP)

Cox point processes

- Gibbs point processes
- Determinantal point processes
- Short summary

Let $\Lambda(u)$, for $u \in S$, be a nonnegative random field on S.

X is a Cox process if it is a "PPP with random intensity $\Lambda(u)$ ".

Algorithm of simulation:

- Generate $\Lambda(u)$.
- **3** Given $\Lambda(u) = \lambda(u)$, generate a PPP with intensity $\lambda(u)$.

Let $\Lambda(u)$, for $u \in S$, be a nonnegative random field on S.

X is a Cox process if it is a "PPP with random intensity $\Lambda(u)$ ".

Algorithm of simulation:

- Generate $\Lambda(u)$.
- **3** Given $\Lambda(u) = \lambda(u)$, generate a PPP with intensity $\lambda(u)$.

Intuitively, **X** will have many points where $\lambda(u)$ takes high values, provided $\lambda(u)$ is smooth enough.

 \Rightarrow we expect a clustering behavior

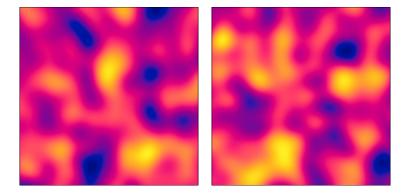
Example : LGCP (Log Gaussian Cox process) Let G(u) be a Gaussian random field on S and take

 $\Lambda(u) = \exp(G(u)).$

Example : LGCP (Log Gaussian Cox process) Let G(u) be a Gaussian random field on S and take

 $\Lambda(u) = \exp(G(u)).$

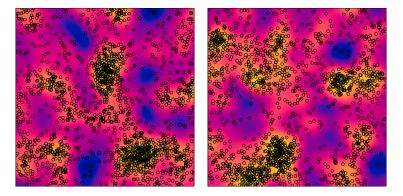
• We simulate the Gaussian field G(u)



Example : LGCP (Log Gaussian Cox process) Let G(u) be a Gaussian random field on S and take

 $\Lambda(u) = \exp(G(u)).$

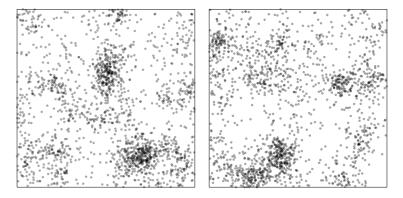
- We simulate the Gaussian field G(u)
- **3** Given G(u), we generate the PPP with intensity $\exp(G(u))$.



Example : LGCP (Log Gaussian Cox process) Let G(u) be a Gaussian random field on S and take

 $\Lambda(u) = \exp(G(u)).$

- We simulate the Gaussian field G(u)
- **3** Given G(u), we generate the PPP with intensity $\exp(G(u))$.



Note the difference with an inhomogeneous PPP:

- for a PPP, the clusters are at the same place for every realisations. No interaction between the points.
- for a Cox process, the clusters are located randomly. This creates an **attraction** between the points (see next slide)

• The intensity of a Cox process is $\rho(u) = \mathbb{E}(\Lambda(u))$

 $\mathbb{E}(n(\mathbf{X} \cap A)) = \mathbb{E}\left(\mathbb{E}(n(\mathbf{X} \cap A)|\Lambda)\right) = \mathbb{E}\left(\int_{A} \Lambda(u) du\right) = \int_{A} \mathbb{E}(\Lambda(u)) du.$

• The intensity of a Cox process is $\rho(u) = \mathbb{E}(\Lambda(u))$

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \mathbb{E}\left(\mathbb{E}(n(\mathbf{X} \cap A)|\Lambda)\right) = \mathbb{E}\left(\int_{A} \Lambda(u) du\right) = \int_{A} \mathbb{E}(\Lambda(u)) du.$$

• The second order intensity is $\rho^{(2)}(u, v) = \mathbb{E}(\Lambda(u)\Lambda(v)).$

• The intensity of a Cox process is $\rho(u) = \mathbb{E}(\Lambda(u))$

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \mathbb{E}\left(\mathbb{E}(n(\mathbf{X} \cap A)|\Lambda)\right) = \mathbb{E}\left(\int_{A} \Lambda(u) du\right) = \int_{A} \mathbb{E}(\Lambda(u)) du.$$

The second order intensity is ρ⁽²⁾(u, v) = E (Λ(u)Λ(v)).
So the pcf is

$$g(u,v) = \frac{\mathbb{E}(\Lambda(u)\Lambda(v))}{\mathbb{E}(\Lambda(u))\mathbb{E}(\Lambda(v))}.$$

If Λ is positively correlated (the typical case), there is attraction:

 $Cov(\Lambda(u), \Lambda(v)) \ge 0 \Leftrightarrow \mathbb{E}(\Lambda(u)\Lambda(v)) \ge \mathbb{E}(\Lambda(u))\mathbb{E}(\Lambda(v)) \Leftrightarrow g(u, v) \ge 1.$

• The intensity of a Cox process is $\rho(u) = \mathbb{E}(\Lambda(u))$

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \mathbb{E}\left(\mathbb{E}(n(\mathbf{X} \cap A)|\Lambda)\right) = \mathbb{E}\left(\int_{A} \Lambda(u) du\right) = \int_{A} \mathbb{E}(\Lambda(u)) du.$$

The second order intensity is ρ⁽²⁾(u, v) = E (Λ(u)Λ(v)).
So the pcf is

$$g(u,v) = \frac{\mathbb{E}(\Lambda(u)\Lambda(v))}{\mathbb{E}(\Lambda(u))\mathbb{E}(\Lambda(v))}.$$

If Λ is positively correlated (the typical case), there is attraction: $Cov(\Lambda(u), \Lambda(v)) \ge 0 \Leftrightarrow \mathbb{E}(\Lambda(u)\Lambda(v)) \ge \mathbb{E}(\Lambda(u))\mathbb{E}(\Lambda(v)) \Leftrightarrow g(u, v) \ge 1.$

• The density wrt to X_0 (PPP with intensity 1) is

$$f(\mathbf{x}) = \mathbb{E}\left(e^{|S| - \int_{S} \Lambda(u) du} \prod_{i=1}^{n(\mathbf{x})} \Lambda(x_i)\right), \quad \forall \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

• The intensity of a Cox process is $\rho(u) = \mathbb{E}(\Lambda(u))$

$$\mathbb{E}(n(\mathbf{X} \cap A)) = \mathbb{E}\left(\mathbb{E}(n(\mathbf{X} \cap A)|\Lambda)\right) = \mathbb{E}\left(\int_{A} \Lambda(u) du\right) = \int_{A} \mathbb{E}(\Lambda(u)) du.$$

The second order intensity is ρ⁽²⁾(u, v) = E (Λ(u)Λ(v)).
So the pcf is

$$g(u,v) = \frac{\mathbb{E}(\Lambda(u)\Lambda(v))}{\mathbb{E}(\Lambda(u))\mathbb{E}(\Lambda(v))}.$$

If Λ is positively correlated (the typical case), there is attraction: $Cov(\Lambda(u), \Lambda(v)) \ge 0 \Leftrightarrow \mathbb{E}(\Lambda(u)\Lambda(v)) \ge \mathbb{E}(\Lambda(u))\mathbb{E}(\Lambda(v)) \Leftrightarrow g(u, v) \ge 1.$

• The density wrt to X_0 (PPP with intensity 1) is

$$f(\mathbf{x}) = \mathbb{E}\left(e^{|\mathcal{S}| - \int_{\mathcal{S}} \Lambda(u) du} \prod_{i=1}^{n(\mathbf{x})} \Lambda(x_i)\right), \quad \forall \, \mathbf{x} = \{x_1, \dots, x_{n(\mathbf{x})}\}.$$

None of ρ , $\rho^{(2)}$, g and f is explicit in general for a Cox process! But some are known for important cases, see next.

Example: Log Gaussian Cox process (LGCP)

Let G(u) be an isotropic Gaussian random field with

- mean m: $\mathbb{E}(G(u)) = m$,
- covariance function c(r): Cov(G(u), G(u+v)) = c(||v||)

The LGCP driven by G(u) is the Cox process driven by $\Lambda(u) = \exp(G(u))$ We know its moments:

 $\rho = \exp(m + c(0)/2),$ $g(r) = \exp(c(r)).$

But the density does not simplify.

Example: Neymann-Scott process

A Neymann-Scott process is a union of clusters:

$$\mathsf{X} = \bigcup_{c \in C} \mathsf{X}_c$$

- C (centers) is a homogeneous PPP with intensity γ
- Given $c \in C$, **X**_c (a cluster) is a PPP with intensity $\alpha k(u-c)$

Interpretation of parameters:

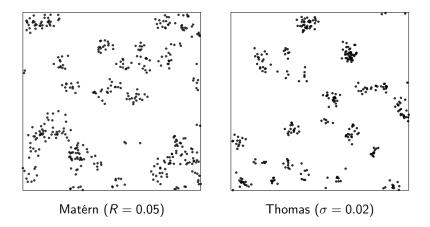
- $\gamma > 0$ is the intensity of clusters,
- $\alpha > 0$ is the mean intensity (or size) of each cluster
- k is a kernel (a density) encoding the spread of each cluster.

This is in fact a Cox point process driven by the random field

$$\Lambda(u) = \sum_{c \in C} \alpha k(u-c).$$

Example: Neymann-Scott process

Matérn cluster process with radius *R*: *k* is the uniform density on B(0, R)Thomas process with variance σ^2 : *k* is the density of a $\mathcal{N}(0, \sigma^2 I_d)$.



For a Neymann-Scott process with parameters $\gamma > 0$, $\alpha > 0$ and k.

$$ho = \gamma lpha,$$
 $g(r) = 1 + rac{1}{\gamma} \int k(s)k(s+r)ds.$

(the integral in g is explicit for a Matérn cluster and a Thomas process)

The density does not simplify.

Cox process: inference

Let a parametric Cox process **X** with parameter θ . For instance $\theta = (\gamma, \alpha, \sigma^2)$ for a Thomas process.

We may estimate θ from a realisation **x** of **X** by:

Cox process: inference

Let a parametric Cox process **X** with parameter θ . For instance $\theta = (\gamma, \alpha, \sigma^2)$ for a Thomas process.

We may estimate θ from a realisation **x** of **X** by:

• Minimum contrast estimation based on g or K, that is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{g}(r)^{q} - g_{\theta}(r)^{q} \right)^{2} dr$$

or
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{K}(r)^{q} - K_{\theta}(r)^{q} \right)^{2} dr$$

where typically q=1/4, $r_{\rm min}=0$ and $r_{\rm max}$ is to be chosen.

Cox process: inference

Let a parametric Cox process **X** with parameter θ . For instance $\theta = (\gamma, \alpha, \sigma^2)$ for a Thomas process.

We may estimate θ from a realisation **x** of **X** by:

• Minimum contrast estimation based on g or K, that is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{g}(r)^{q} - g_{\theta}(r)^{q} \right)^{2} dr$$

$$\mathbf{r} \quad \hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{K}(r)^{q} - K_{\theta}(r)^{q} \right)^{2} dr$$

where typically q=1/4, $r_{\rm min}=0$ and $r_{\rm max}$ is to be chosen.

Maximum likelihood estimation

0

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \mathbb{E} \left(e^{|S| - \int_{S} \Lambda_{\theta}(u) du} \prod_{i=1}^{n(\mathbf{X})} \Lambda_{\theta}(x_{i}) \right)$$

but this requires huge Monte-Carlo simulations to approximate $\mathbb{E}(.)$

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

Oint process models

- Poisson point process (PPP)
- Cox point processes

Gibbs point processes

- Determinantal point processes
- Short summary

Gibbs point processes

We speak of a Gibbs model when we define \boldsymbol{X} through its density.

Gibbs point processes

We speak of a Gibbs model when we define \boldsymbol{X} through its density.

Examples :

• A PPP with intensity $\rho(u)$ admits the density (wrt to X_0):

$$f(\mathbf{x}) = e^{|S| - \int_{S} \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i) = c \exp\left(\sum_{u \in \mathbf{x}} \log(\rho(u))\right)$$

where c does not depend on \mathbf{x} . In the homogeneous case

 $f(\mathbf{x}) = c \exp(\log(\rho) n(\mathbf{x})).$

Gibbs point processes

We speak of a ${\bf Gibbs\ model}$ when we define ${\bf X}$ through its density.

Examples :

• A PPP with intensity $\rho(u)$ admits the density (wrt to X_0):

$$f(\mathbf{x}) = e^{|S| - \int_{S} \rho(u) du} \prod_{i=1}^{n(\mathbf{x})} \rho(x_i) = c \exp\left(\sum_{u \in \mathbf{x}} \log(\rho(u))\right)$$

where c does not depend on \mathbf{x} . In the homogeneous case

$$f(\mathbf{x}) = c \exp(\log(\rho) n(\mathbf{x})).$$

• We define an homogeneous pairwise interaction Gibbs model by

$$f(\mathbf{x}) = c \exp\left(\beta n(\mathbf{x}) + \sum_{u,v \in \mathbf{x}}^{\neq} \Phi(\|u-v\|)\right),$$

where $\beta > 0$ is related (but not equal) to the log-intensity ρ of **x**, and $\Phi : \mathbb{R}_+ \to \mathbb{R} \cup \{-\infty\}$ is the pairwise interaction function.

Recall : the density wrt to \mathbf{X}_0 (i.e., the PPP with ho=1) is

$$f(\mathbf{x}) = c \exp\left(\beta n(\mathbf{x}) + \sum_{u,v \in \mathbf{x}}^{\neq} \Phi(||u - v||)\right).$$

Interpretation:

- If $\Phi = 0$, then we're back to a PPP
- A realisation **x** will tend to maximise $\sum_{u,v\in\mathbf{x}}^{\neq} \Phi(||u-v||)$

Recall : the density wrt to \mathbf{X}_0 (i.e., the PPP with ho=1) is

$$f(\mathbf{x}) = c \exp\left(\beta n(\mathbf{x}) + \sum_{u,v \in \mathbf{x}}^{\neq} \Phi(\|u - v\|)\right).$$

Interpretation:

- If $\Phi = 0$, then we're back to a PPP
- A realisation **x** will tend to maximise $\sum_{u,v\in\mathbf{x}}^{\neq} \Phi(||u-v||)$

Existence: To have $\mathbb{E}(f(\mathbf{X}_0)) = 1$, we must ensure that

$$0 < c^{-1} := \mathbb{E}\left[\exp\left(\beta n(\mathbf{X}_0) + \sum_{u,v \in \mathbf{X}_0}^{\neq} \Phi(\|u-v\|)\right)\right] < \infty.$$

Recall : the density wrt to \mathbf{X}_0 (i.e., the PPP with ho=1) is

$$f(\mathbf{x}) = c \exp\left(\beta n(\mathbf{x}) + \sum_{u,v \in \mathbf{x}}^{\neq} \Phi(||u - v||)\right).$$

Interpretation:

- If $\Phi = 0$, then we're back to a PPP
- A realisation **x** will tend to maximise $\sum_{u,v\in\mathbf{x}}^{\neq} \Phi(||u-v||)$

Existence: To have $\mathbb{E}(f(\mathbf{X}_0)) = 1$, we must ensure that

$$0 < c^{-1} := \mathbb{E}\left[\exp\left(\beta n(\mathbf{X}_0) + \sum_{u,v \in \mathbf{X}_0}^{\neq} \Phi(\|u-v\|)\right)\right] < \infty.$$

• $c^{-1} > 0$ is always true since

 $c^{-1} \geq \mathbb{E}[...|n(X_0) = 0] \mathbb{P}(n(X_0) = 0) = \mathbb{P}(n(X_0) = 0) > 0.$

Recall : the density wrt to \mathbf{X}_0 (i.e., the PPP with ho=1) is

$$f(\mathbf{x}) = c \exp\left(\beta n(\mathbf{x}) + \sum_{u,v \in \mathbf{x}}^{\neq} \Phi(||u - v||)\right).$$

Interpretation:

- If $\Phi = 0$, then we're back to a PPP
- A realisation **x** will tend to maximise $\sum_{u,v\in\mathbf{x}}^{\neq} \Phi(||u-v||)$

Existence: To have $\mathbb{E}(f(\mathbf{X}_0)) = 1$, we must ensure that

$$0 < c^{-1} := \mathbb{E}\left[\exp\left(\beta n(\mathbf{X}_0) + \sum_{u,v \in \mathbf{X}_0}^{\neq} \Phi(\|u-v\|)\right)\right] < \infty.$$

• $c^{-1} > 0$ is always true since

 $c^{-1} \geq \mathbb{E}[...|n(\mathbf{X}_0) = 0] \mathbb{P}(n(\mathbf{X}_0) = 0) = \mathbb{P}(n(\mathbf{X}_0) = 0) > 0.$

• For $c^{-1} < \infty$, a sufficient assumption is $\Phi \le 0$, since then $c^{-1} \le \mathbb{E} \left[\exp \left(\beta n(\mathbf{X}_0) \right) \right] < \infty.$

Example: the Strauss process

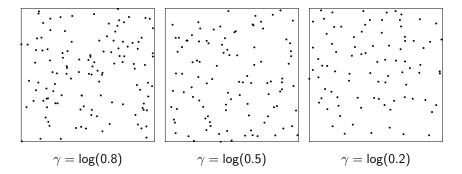
Strauss model with radius R>0 and interaction parameter $\gamma \leq 0$ when

 $\Phi(r) = \gamma \mathbf{1}_{r \leq R}$

so that

$$f(\mathbf{x}) = c \exp \left(\beta n(\mathbf{x}) + \gamma s_R(\mathbf{x})\right),$$

where $s_R(\mathbf{x})$ is the number of *R*-close pairs of points in \mathbf{x} .

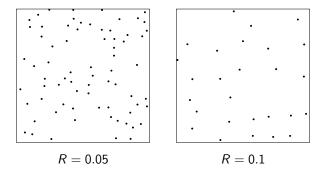


Example: the Hardcore point process

The Hardcore model with radius R > 0 corresponds to

$$\Phi(r) = egin{cases} -\infty & ext{if } r \leq R \ 0 & ext{otherwise} \end{cases}$$

so that no pairs can occur at a distance less than R.



Example: non pairwise interaction

We can consider more complicated density. For instance the **area** interaction process, for R > 0 and $\gamma \in \mathbb{R}$,

$$f(\mathbf{x}) = c \exp\left(\beta n(\mathbf{x}) + \gamma \left| \bigcup_{u \in \mathbf{x}} B(u, R) \right| \right),$$

where the interaction depends on the volume of the union of balls.



Advantages:

- Flexible models, easy to interpret
- Mainly used to model inhibition between the points
- But some Gibbs models can yield attraction between points

Drawbacks:

- We do not know the moments (neither ρ , nor g, nor K)
- Not easy to simulate (MCMC methods are needed)
- In the density, we do not know explicitly c: this is problematic when it comes to estimate a parameter θ by MLE (since c depends on θ)
- Very hard to deal with in theory

Gibbs point process: Papangelou conditional intensity

The **Papangelou conditional intensity** is defined for any u and \mathbf{x} by

$$\lambda(u,\mathbf{x})=\frac{f(\mathbf{x}\cup u)}{f(\mathbf{x})}.$$

Intuitively, this is the probability to have a point at u given that the point configuration otherwise is \mathbf{x} .

The benefit of λ over f is that $\lambda(u, \mathbf{x})$ does not depend on c.

Gibbs point process: Papangelou conditional intensity

The **Papangelou conditional intensity** is defined for any u and \mathbf{x} by

$$\lambda(u,\mathbf{x}) = \frac{f(\mathbf{x} \cup u)}{f(\mathbf{x})}.$$

Intuitively, this is the probability to have a point at u given that the point configuration otherwise is \mathbf{x} .

The benefit of λ over f is that $\lambda(u, \mathbf{x})$ does not depend on c.

We can take advantage of that for:

• parametric inference, through the **pseudo-likelihood** estimator:

$$\hat{ heta} = rgmax_{ heta} \sum_{i=1}^{n(\mathbf{x})} \log \lambda_{ heta}(x_i, \mathbf{x} \setminus x_i) - \int_{S} \lambda_{ heta}(u, \mathbf{x}) du.$$

(note the similarity with the log-likelihood of a PPP)

Gibbs point process: Papangelou conditional intensity

The **Papangelou conditional intensity** is defined for any u and \mathbf{x} by

$$\lambda(u,\mathbf{x}) = \frac{f(\mathbf{x} \cup u)}{f(\mathbf{x})}.$$

Intuitively, this is the probability to have a point at u given that the point configuration otherwise is \mathbf{x} .

The benefit of λ over f is that $\lambda(u, \mathbf{x})$ does not depend on c.

We can take advantage of that for:

• parametric inference, through the **pseudo-likelihood** estimator:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n(\mathbf{x})} \log \lambda_{\theta}(x_i, \mathbf{x} \setminus x_i) - \int_{S} \lambda_{\theta}(u, \mathbf{x}) du.$$

(note the similarity with the log-likelihood of a PPP)

- $\bullet\,$ simulating ${\bf X}$ by a birth-death Metropolis-Hastings algorithm, where
 - a birth proposal at u depends (positively) on $\lambda(u, \mathbf{x})$
 - a death proposal of $x_i \in \mathbf{x}$ depends (negatively) on $\lambda(x_i, \mathbf{x} \setminus x_i)$.

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

Oint process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes

• Determinantal point processes

Short summary

Determinantal point processes (DPPs)

The *n*-th order intensity $\rho^{(n)}$ of a point process satisfies

$$\mathbb{E}\left(\sum_{u_1,\ldots,u_n\in\mathbf{X}}^{\neq}\mathbf{1}_{u_1\in A_1,\ldots,u_n\in A_n}\right)=\int_{A_1}\cdots\int_{A_n}\rho^{(n)}(u_1,\ldots,u_n)du_1\cdots du_n,$$

 $\forall A_1, \ldots, A_n \subseteq S$. Intuitively, $\rho^{(n)}(u_1, \ldots, u_n) \approx P(\{u_1, \ldots, u_n\} \subset \mathbf{X})$.

A DPP is defined through the intensities $\rho^{(n)}$.

Determinantal point processes (DPPs)

The *n*-th order intensity $\rho^{(n)}$ of a point process satisfies

$$\mathbb{E}\left(\sum_{u_1,\ldots,u_n\in\mathbf{X}}^{\neq}\mathbf{1}_{u_1\in A_1,\ldots,u_n\in A_n}\right)=\int_{A_1}\cdots\int_{A_n}\rho^{(n)}(u_1,\ldots,u_n)du_1\cdots du_n,$$

 $\forall A_1, \ldots, A_n \subseteq S$. Intuitively, $\rho^{(n)}(u_1, \ldots, u_n) \approx P(\{u_1, \ldots, u_n\} \subset X)$.

A DPP is defined through the intensities $\rho^{(n)}$.

Let C(u, v) be a covariance function. **X** is a **DPP with kernel** C if

$$\forall n \geq 1, \quad \rho^{(n)}(u_1, \ldots, u_n) = \det [C(u_i, u_j)]_{1 \leq i, j \leq n},$$

where $[C(u_i, u_j)]_{1 \le i,j \le n}$ denotes the $n \times n$ matrix with entries $C(u_i, u_j)$.

Stationary DPPs

Recall: X is a DPP with kernel C if

 $\forall n \geq 1, \quad \rho^{(n)}(u_1, \ldots, u_n) = \det \left[C(u_i, u_j) \right]_{1 \leq i, j \leq n}.$

If C(u, v) = C(||u - v||), then **X** is stationary, isotropic and

- its intensity is $\rho^{(1)}(u) = \rho = C(0)$
- its second order intensity $\rho^{(2)}$ is

$$\rho^{(2)}(u,v) = \det \begin{pmatrix} C(0) & C(\|u-v\|) \\ C(\|u-v\|) & C(0) \end{pmatrix} = C(0)^2 - C(\|u-v\|)^2.$$

• Hence its pcf is, for r = ||u - v||, is

$$g(r) = rac{
ho^{(2)}(u,v)}{
ho(u)
ho(v)} = 1 - rac{C(r)^2}{C(0)^2}.$$

Since $g \leq 1$, DPPs are models for inhibitive point processes.

Stationary DPPs: example

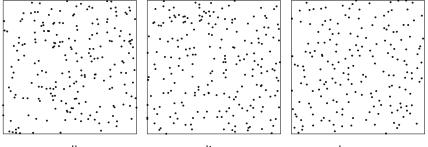
Existence: C(r) must be a covariance function such that $\mathcal{F}(C) \leq 1$.

Stationary DPPs: example

Existence: C(r) must be a covariance function such that $\mathcal{F}(C) \leq 1$.

Example: The Gaussian-type DPP

The Gaussian covariance function $C(r) = \rho e^{-r^2/\alpha^2}$ with $\pi \rho \alpha^2 \leq 1$ defines the DPP with intensity ρ and pcf $g(r) = 1 - e^{-2r^2/\alpha^2}$.



small α

In theory, the kernel C admits the eigen-decomposition on S

$$C(u,v) = \sum_{k\geq 1} \lambda_k \Phi_k(u) \Phi_k(v), \quad u,v \in S,$$
(1)

where $0 \leq \lambda_k \leq 1$ and $(\Phi_k)_k$ is an orthonormal basis of $L^2(S)$.

In theory, the kernel C admits the eigen-decomposition on S

$$C(u,v) = \sum_{k\geq 1} \lambda_k \Phi_k(u) \Phi_k(v), \quad u,v \in S,$$
(1)

where $0 \leq \lambda_k \leq 1$ and $(\Phi_k)_k$ is an orthonormal basis of $L^2(S)$.

From this decomposition we can:

• implement a perfect simulation algorithm ;

In theory, the kernel C admits the eigen-decomposition on S

$$C(u,v) = \sum_{k\geq 1} \lambda_k \Phi_k(u) \Phi_k(v), \quad u,v \in S,$$
(1)

where $0 \le \lambda_k \le 1$ and $(\Phi_k)_k$ is an orthonormal basis of $L^2(S)$.

From this decomposition we can:

- implement a perfect simulation algorithm ;
- deduce the density of the DPP when $\lambda_k < 1$, that is

 $f(\mathbf{x}) = c \det \left[L(x_i, x_j) \right]_{1 \le i, j \le n},$

where $c = e^{|S|} \prod_{k \geq 1} (1 - \lambda_k)$ and L is another kernel defined by

$$L(u,v) = \sum_{k\geq 1} \frac{\lambda_k}{1-\lambda_k} \Phi_k(u) \Phi_k(v), \quad u,v\in S.$$

In theory, the kernel C admits the eigen-decomposition on S

$$C(u,v) = \sum_{k \ge 1} \lambda_k \Phi_k(u) \Phi_k(v), \quad u, v \in S,$$
(1)

where $0 \leq \lambda_k \leq 1$ and $(\Phi_k)_k$ is an orthonormal basis of $L^2(S)$.

From this decomposition we can:

- implement a perfect simulation algorithm ;
- deduce the density of the DPP when $\lambda_k < 1$, that is

 $f(\mathbf{x}) = c \det \left[L(x_i, x_j) \right]_{1 \le i, j \le n},$

where $c = e^{|S|} \prod_{k \geq 1} (1 - \lambda_k)$ and L is another kernel defined by

$$L(u,v) = \sum_{k\geq 1} \frac{\lambda_k}{1-\lambda_k} \Phi_k(u) \Phi_k(v), \quad u,v \in S.$$

But (1) is rarely known, unless C is defined through it. Approximations exist in the stationary case C(u, v) = C(||u - v||).

DPP: inference

Let a parametric DPP **X** with parameter θ . For instance $\theta = (\rho, \alpha)$ for a Gaussian-type DPP.

We may estimate θ from a realisation **x** of **X** by:

DPP: inference

Let a parametric DPP **X** with parameter θ . For instance $\theta = (\rho, \alpha)$ for a Gaussian-type DPP.

We may estimate θ from a realisation **x** of **X** by:

• Minimum contrast estimation based on g or K, that is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{g}(r)^{q} - g_{\theta}(r)^{q} \right)^{2} dr$$

or
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{K}(r)^{q} - K_{\theta}(r)^{q} \right)^{2} dr$$

where typically q=1/2, $r_{\rm min}=0$ and $r_{\rm max}$ is to be chosen.

DPP: inference

Let a parametric DPP **X** with parameter θ . For instance $\theta = (\rho, \alpha)$ for a Gaussian-type DPP.

We may estimate θ from a realisation **x** of **X** by:

• Minimum contrast estimation based on g or K, that is

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{g}(r)^{q} - g_{\theta}(r)^{q} \right)^{2} dr$$

or
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \int_{r_{\min}}^{r_{\max}} \left(\hat{K}(r)^{q} - K_{\theta}(r)^{q} \right)^{2} dr$$

where typically q=1/2, $r_{\rm min}=0$ and $r_{\rm max}$ is to be chosen.

• MLE, if we know the eigen-decomposition of C:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} f_{\theta}(x).$$

Examples of points patterns

2 Summary/descriptive statistics

- First order moment
- Second order moments
- Other summary statistics

Oint process models

- Poisson point process (PPP)
- Cox point processes
- Gibbs point processes
- Determinantal point processes
- Short summary

Summary

Models	Main features	ρ, g	density
Poisson	Only for CSR.	1	~
Cox (LGCP, Matérn, Thomas)	Attraction, clusters.	~	×
Gibbs	Very flexible. Mainly inhibition but attraction possible.	×	✓1
DPP	Inhibition. Less flexible than Gibbs.	~	√ ²

 $^1 \rm{up}$ to the constant; Papangelou conditional density is rather used for inference. $^2 \rm{if}$ we know the eigen-decomposition of the kernel.

References (bis)

- D.J Daley and D. Vere-Jones. An introduction to the Theory of Point Processes. Springer Series in Statistics, 1998.
- J. Møller and R. P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, 2004.
- A. Baddeley, E. Rubak, and R. Turner. *Spatial Point Patterns : Methodology and Applications with R.* CRC Press, 2015.

All illustrations have been implemented with the **spatstat library** in **R**. Almost all presented datasets also come from this library.